

MySQL 5.0 Stored Procedures

MySQL 5.0 New Features Series – Part 1

 A MySQL® Technical White Paper
 Peter Gulutzan

March, 2005

Copyright © 2005, MySQL AB

Table of Contents

Introduction ..3
A Definition and an Example ..3
Why Stored Procedures ..4
Why MySQL Statements are Legal in a Procedure Body...........................8
Characteristics Clauses ..10
Parameters..13
The New SQL Statements ...15
(Scope ...16
Loops...21
Error Handling ..29
Cursors ...35
Security ...41
Functions ..43
Metadata..44
Details ...48
Style...52
Tips when writing long routines...63
Bugs ..64
Feature Requests ...65
Resources...65
Conclusion..66
About MySQL ...66

 Copyright © 2005, MySQL AB Page 2

Introduction

This book is for long-time MySQL users who want to know "what's new" in version 5. The short
answer is "stored procedures, triggers, views, information_schema". The long answer is the
“MySQL 5.0 New Features” series, and this book is the first in the series.

What I'm hoping to do is make this look like a hands-on session where you, as if you're working it
out yourself on your keyboard, can walk through sample problems.

To do this, I'll go through each little item, building up slowly. By the end, I'll be showing larger
routines that do something useful, something that you might have thought was tough.

Conventions and Styles

Whenever I want to show actual code, such as something that comes directly from the
screen of my mysql client program, I switch to a Courier font, which looks different from
the regular text font. For example:

mysql> DROP FUNCTION f;
Query OK, 0 rows affected (0.00 sec)

When the example is large and I want to draw attention to a particular line or phrase, I
highlight it with a double underline and a small arrow on the right of the page. For
example:

mysql> CREATE PROCEDURE p ()
 -> BEGIN
 -> /* This procedure does nothing */ <--
 -> END;//
Query OK, 0 rows affected (0.00 sec)

Sometimes I will leave out the “mysql>” and “->” prompts so that you can cut the
examples and paste them into your copy of the mysql client program. (If you aren't
reading the text of this book in a machine-readable form, try looking for the script on the
mysql.com web site.)

I tested all the examples with the publicly-available alpha version of MySQL 5.0.3 on
Linux, SUSE 9.2. By the time you read this, the version number will be higher and the
available operating systems will include Windows, Sparc, and HP-UX. So I'm confident
that you'll be able to run every example on your computer. But if not, well, as an
experienced MySQL user you know that help and support is always available.

A Definition and an Example

A stored procedure is a procedure (like a subprogram in a regular computing language) that is
stored (in the database). Correctly speaking, MySQL supports "routines" and there are two kinds
of routines: stored procedures which you call, or functions whose return values you use in other
SQL statements the same way that you use pre-installed MySQL functions like pi(). I'll use the
word "stored procedures" more frequently than "routines" because it's what we've used in the
past, and what people expect us to use.

 Copyright © 2005, MySQL AB Page 3

A stored procedure has a name, a parameter list, and an SQL statement, which can contain
many more SQL statements. There is new syntax for local variables, error handling, loop control,
and IF conditions. Here is an example of a statement that creates a stored procedure.

CREATE PROCEDURE procedure1 /* name */
(IN parameter1 INTEGER) /* parameters */
BEGIN /* start of block */
 DECLARE variable1 CHAR(10); /* variables */
 IF parameter1 = 17 THEN /* start of IF */
 SET variable1 = 'birds'; /* assignment */
 ELSE
 SET variable1 = 'beasts'; /* assignment */
 END IF; /* end of IF */
 INSERT INTO table1 VALUES (variable1);/* statement */
END /* end of block */

What I'm going to do is explain in detail all the things you can do with stored procedures. We'll
also get into another new database object, triggers, because there
is a tendency to associate triggers with stored procedures.

Why Stored Procedures

Stored procedures are something new for MySQL, so naturally you'll approach them with
some caution. After all, there's no track record, no large body of user experience that
proves they're the way to go. Nevertheless, you should start to think now about moving
your code out of where it is now (an application host program, a UDF, a script),
and into a stored procedure. The reasons for using procedures are compelling.

Stored procedures are proven technology! Yes, they are new in MySQL, but the same
functionality exists in other DBMSs, and often precisely the same syntax too. So there
are concepts that you can steal, there are people with experience whom you can consult
or hire, there is third-party documentation (books or web pages) that you can read.

Stored procedures are fast! Well, we can't prove that for MySQL yet, and everyone's
experience will vary. What we can say is that the MySQL server takes some advantage
of caching, just as prepared statements do. There is no compilation, so an SQL stored
procedure won't work as quickly as a procedure written with an external language such
as C. The main speed gain comes from reduction of network traffic. If you have a
repetitive task that requires checking, looping, multiple statements, and no user
interaction, do it with a single call to a procedure that's stored on the server. Then there
won't be messages going back and forth between server and client, for every step of the
task.

Stored procedures are components! Suppose that you change your host language -- no
problem, the logic is in the database not the application.

Stored procedures are portable! When you write your stored procedure in SQL, you know
that it will run on every platform that MySQL runs on, without obliging you to install an
additional runtime-environment package, or set permissions for program execution in the
operating system, or deploy different packages if you have different computer types.
That's the advantage of writing in SQL rather than in an external language like Java or C
or PHP. Don't get me wrong about this: I know there are sometimes excellent reasons to
support external-language routines, they just lack this particular advantage.

 Copyright © 2005, MySQL AB Page 4

Stored procedures are stored! If you write a procedure with the right naming
conventions, for example saying chequing_withdrawal for a bank transaction, then people
who want to know about chequing can find your procedure. It's always available as
'source code' in the database itself. And it makes sense to link the data with the
processes that operate on the data, as you might have heard in your programming-theory
classes.

Stored procedures are migratory! MySQL adheres fairly closely to the SQL:2003
standard. Others (DB2, Mimer) also adhere. Others (Oracle, SQL Server) don't adhere
but I'll be providing tips and tools that make it easier to take code written for another
DBMS and plunking it into MySQL.

Setting up with MySQL 5.0

mysql_fix_privilege_tables

or

~/mysql-5.0/scripts/mysql_install_db

As part of the preparation for our exercises, I'll assume MySQL 5.0 is installed. If you're not
working in a place where elf database administrators install software and databases for you, you'll
have to install it yourself. One thing that's easy to forget is that you need to have a table named
mysql.proc. After you've installed the latest version, you should run
either mysql_fix_privilege_tables or mysql_install_db -- or stored procedures won't work for you. I
also run an undocumented SQL script after starting as --root, thus:
mysql>source/home/pgulutzan/mysql-
5.0/scripts/mysql_prepare_privilege_tables_for_5.sql

Starting the MySQL Client

This is how I start the mysql client. You might do it differently, for example you might run from a
different subdirectory if you have a binary version or a Windows computer.

pgulutzan@mysqlcom:~> /usr/local/mysql/bin/mysql --user=root
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 1 to server version: 5.0.3-alpha-debug

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

During this demonstration, I will be showing you what the results look like from the mysql client,
which I started after establishing myself as the root user. This means I have lots of privileges.

Check for the Correct Version

To ensure that I'm using the right MySQL version, I display the version in use. I want to be sure
that I have version 5. I have two ways to check this:

SHOW VARIABLES LIKE 'version';

or

SELECT VERSION();

 Copyright © 2005, MySQL AB Page 5

For example:

mysql> SHOW VARIABLES LIKE 'version';
+---------------+-------------------+
| Variable_name | Value |
+---------------+-------------------+
| version | 5.0.3-alpha-debug |
+---------------+-------------------+
1 row in set (0.00 sec)

mysql> SELECT VERSION();
+-------------------+
| VERSION() |
+-------------------+
| 5.0.3-alpha-debug |
+-------------------+
1 row in set (0.00 sec)

When I see the number '5.0.x', I know that stored procedures will work.

The Sample “Database”

The first thing I do is create a new database and make it my default database.
The SQL statements that I need for this are:

CREATE DATABASE db5;
USE db5;

For example:

mysql> CREATE DATABASE db5;
Query OK, 1 row affected (0.00 sec)

mysql> USE db5;
Database changed

I avoid using a real database that might have important data in it.

And now I'm making a simple table to work with. The statements that I use for this are:

mysql> CREATE DATABASE db5;
Query OK, 1 row affected (0.01 sec)

mysql> USE db5;
Database changed

mysql> CREATE TABLE t (s1 INT);
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO t VALUES (5);
Query OK, 1 row affected (0.00 sec)

You'll notice that I'm only inserting one row into the table. I want my sample table to be simple.
I'm not showing off table manipulation here, I'm showing off stored procedures, and they're
complex enough without worrying about big tables.

 Copyright © 2005, MySQL AB Page 6

So the sample database that we'll start with is a table named t with one row in it.

Pick a Delimiter

Now I need a delimiter. The statement I'll use is

DELIMITER //

For example:

mysql> DELIMITER //

The delimiter is the character or string of characters that you'll use to tell the mysql client that
you've finished typing in an SQL statement. For ages, the delimiter has always been a semicolon.
That causes a problem because, in a stored procedure, one can have many
statements, and every one must end with a semicolon.

So for your delimiter, pick a string which is very unlikely to occur within any statement, or within
any procedure. I've used slash slash. Others use a vertical bar. I've seen '@' in DB2 procedures
but I don't like it. You can use whatever you want, but during this session it's probably easier to
copy me. To resume using “;” as a delimiter later, say
“DELIMITER ;//”.

CREATE PROCEDURE Example

CREATE PROCEDURE p1 () SELECT * FROM t; //

Perhaps this is the first stored procedure that you've ever made with MySQL. If so, be sure to
mark this event in your diary.

CREATE PROCEDURE p1 () SELECT * FROM t; // <--

The first part of the SQL statement that creates a stored procedure is the words "CREATE
PROCEDURE".

CREATE PROCEDURE p1 () SELECT * FROM t; // <--

The second part is the procedure name. The name of this new procedure will be p1.

Digression: Legal Identifiers

Procedure Names are not case sensitive, so 'p1' and 'P1' are the same name.

You cannot use two procedures with the same name in the same database. That would be
overloading. Some DBMSs allow overloading. MySQL doesn't. You can use qualified names of
the form “database-name . procedure-name” , for example “db5.p1”.

Procedure names can be delimited. If the name is delimited, it can contain spaces. The maximum
name length is 64 characters. But avoid using using names which are already names of built-in
MySQL functions. Here's what can happen if you do:

 Copyright © 2005, MySQL AB Page 7

mysql> CALL pi();
Error 1064 (42000): You have a syntax error.
mysql> CALL pi ();
Error 1305 (42000): PROCEDURE does not exist.

In the first example, I used a function named pi. It's legal, but you must put a space after the
name when you're calling it, as I did in the second example.

CREATE PROCEDURE p1 () SELECT * FROM t; // <--

“() “is the 'parameter list'.

The third part of the CREATE PROCEDURE statement is the parameter list. It's always
necessary to have a parameter list inside parentheses here. In this procedure, there are no
parameters, so the parameter list is empty -- so all I had to type is the parentheses pair. But they
are compulsory.

CREATE PROCEDURE p1 () SELECT * FROM t; // <--

“SELECT * FROM t;” is the body.

And finally, the last part of the statement is the procedure body, which is an SQL statement. Here
the body is “SELECT * FROM t;” which includes a semicolon “;”. The semicolon is optional when
there is a real statement-ender (the “//”) following it.

It's probably good if you remember that I'm calling this part the body of the procedure, because
body is a technical term that everybody uses.

Ordinarily, it's not normal to put SELECT statements in stored procedures, this is for
illustration. I decided that some procedure should simply select from our table, so that when you
call the procedure it will be obvious that it's working.

Why MySQL Statements are Legal in a Procedure Body

What SQL statements are legal in the body of a MySQL procedure? You can make a procedure
that contains pretty well anything, including INSERT, UPDATE, DELETE, SELECT, DROP,
CREATE, REPLACE, and so on. The only important point to
remember is that your code won't be portable if you include a MySQL extension.

As in Standard SQL: any database definition language statements are legal:
CREATE PROCEDURE p () DELETE FROM t; //

Also, SET and COMMIT and ROLLBACK are legal:
CREATE PROCEDURE p () SET @x = 5; //

MySQL extra feature: any database manipulation language statements are legal:
CREATE PROCEDURE p () DROP TABLE t; //

MySQL extension: a direct SELECT is legal:
CREATE PROCEDURE p () SELECT 'a'; //

By the way, I call the ability to include DDL statements in a procedure a MySQL "extra feature"
because the SQL Standard says that this is “non-core” which means it's optional.

 Copyright © 2005, MySQL AB Page 8

One restriction is that, inside a procedure body, you can't put database-manipulation statements
that manipulate a routine. For example this is illegal:

CREATE PROCEDURE p1 ()
 CREATE PROCEDURE p2 () DELETE FROM t; //

So these statements, which are all new in MySQL 5.0, are illegal in a procedure body:
CREATE PROCEDURE, ALTER PROCEDURE, DROP PROCEDURE, CREATE FUNCTION,
DROP FUNCTION, CREATE TRIGGER, DROP TRIGGER. On the other hand, you can say
“CREATE PROCEDURE db5.p1 () DROP DATABASE db5//”.

Statements like “USE database” are also illegal. MySQL assumes that the default database is the
one that the procedure is in.

Call the Procedure

1. Now, to call a procedure, all you have to do is enter the word CALL and then the name of the
procedure and then the parentheses. Again, the parentheses are compulsory.

When you do this for our example procedure p1, the result will be that you see the contents of the
table t on your screen.

mysql> CALL p1() //
+------+
| s1 |
+------+
| 5 |
+------+
1 row in set (0.03 sec)
Query OK, 0 rows affected (0.03 sec)

That's reasonable. The body of the procedure is a "SELECT * FROM t;" statement.

2. Let me say that again, another way.

mysql> CALL p1() //

is the same as:

mysql> SELECT * FROM t; //

So, when you call the procedure, it's exactly as if you'd executed
"SELECT * FROM t;".

Okay, the fundamental point – that you can CREATE a procedure then CALL it – is clear now,
eh? I hope that you are even saying to yourself that this is rather simple. But now we're going to
do a series of exercises where we add one clause at a time, or vary one of the existing clauses.
There will be many such clauses, even before we get to complex parts.

 Copyright © 2005, MySQL AB Page 9

Characteristics Clauses

1.

CREATE PROCEDURE p2 ()
LANGUAGE SQL <--
NOT DETERMINISTIC <--
SQL SECURITY DEFINER <--
COMMENT 'A Procedure' <--
SELECT CURRENT_DATE, RAND() FROM t //

Let's make a procedure that has some clauses which describe the characteristics of the
procedure. The clauses come after the parentheses, but before the body. These clauses are all
optional. What good are they?

2.

CREATE PROCEDURE p2 ()
LANGUAGE SQL <--
NOT DETERMINISTIC
SQL SECURITY DEFINER
COMMENT 'A Procedure'
SELECT CURRENT_DATE, RAND() FROM t //

Well, the LANGUAGE SQL clause is no good at all. It simply means that the body of the
procedure is written in SQL. And that's always true. But it's not a bad idea to put this clause in,
because there's another DBMS which requires it -- namely IBM DB2. So use this if you care
about DB2 compatibility. Besides, in the future, there might be support for calling procedures in
other languages besides SQL.

3.

CREATE PROCEDURE p2 ()
LANGUAGE SQL
NOT DETERMINISTIC <--
SQL SECURITY DEFINER
COMMENT 'A Procedure'
SELECT CURRENT_DATE, RAND() FROM t //

The next clause, NOT DETERMINISTIC, is informational. A deterministic procedure, something
like the religious concept of predestination, is a procedure which will always return the same
outputs given the same data inputs. In this case, since the body of the
procedure has a SELECT whose results are not predictable, I've called it NOT DETERMINISTIC.
But the MySQL optimizer does not care, at least at this time.

 Copyright © 2005, MySQL AB Page 10

4.

CREATE PROCEDURE p2 ()
LANGUAGE SQL
NOT DETERMINISTIC
SQL SECURITY DEFINER <--
COMMENT 'A Procedure'
SELECT CURRENT_DATE, RAND() FROM t //

The next clause, SQL SECURITY, can be defined as either SQL SECURITY DEFINER or SQL
SECURITY INVOKER. This gets us into the realm of privileges. We're going to have an exercise
that tests privileges later on.

SQL SECURITY DEFINER means 'at CALL time, check privileges of user who created the
procedure' (the other choice is SQL SECURITY INVOKER)

For the moment, it's enough to note that SQL SECURITY DEFINER is an instruction that tells the
MySQL server to check the privileges of the user who created the procedure -- at the time that
the procedure is called, regardless of which user is doing the CALL. The other option tells the
server to check the caller's privileges instead.

5.

CREATE PROCEDURE p2 ()
LANGUAGE SQL
NOT DETERMINISTIC
SQL SECURITY DEFINER
COMMENT 'A Procedure' <--
SELECT CURRENT_DATE, RAND() FROM t //

COMMENT 'A procedure' is an optional remark.

And finally, the comment clause is something that will be stored along with the procedure
definition. It is non-standard. I'll point out anything non-standard as I go along, but luckily that will
be rare.

6.

CREATE PROCEDURE p2 ()
LANGUAGE SQL
NOT DETERMINISTIC
SQL SECURITY DEFINER
COMMENT ''
SELECT CURRENT_DATE, RAND() FROM t //

is the same as:

CREATE PROCEDURE p2 ()
SELECT CURRENT_DATE, RAND() FROM t //

The characteristics clauses have defaults. If I omit them all, that's the same as saying
LANGUAGE SQL NOT DETERMINISTIC SQL SECURITY DEFINER COMMENT ''.

 Copyright © 2005, MySQL AB Page 11

Digressions

Digression: The effect of CALL p2() //

mysql> call p2() //
+--------------+-----------------+
| CURRENT_DATE | RAND() |
+--------------+-----------------+
| 2004-11-09 | 0.7822275075896 |
+--------------+-----------------+
1 row in set (0.26 sec)
Query OK, 0 rows affected (0.26 sec)

And when we call procedure p2, a SELECT is executed which returns the current date and a
random number, which is what we expect.

Digression: sql_mode unchanging

mysql> set sql_mode='ansi' //
mysql> create procedure p3()select'a'||'b'//
mysql> set sql_mode=''//
mysql> call p3()//
+------------+
| 'a' || 'b' |
+------------+
| ab |
+------------+

MySQL silently preserves the environment at the time that the procedure is created too. For
example, suppose we use two bars when we are concatenating strings. That is only legal while
the sql mode is ansi. If we change the sql mode to non-ansi, that doesn't matter. The call will still
work, as if the original setting is still true.

Exercise

Question

If you don't mind exercise, ask yourself whether you could handle this request
without peeking at the Answer below.

Create a procedure. The procedure should display 'Hello, world'.

Please take about five seconds to contemplate the problem.

Given what you have read so far, this should be easy. While you think about it, I'll just review
some random choice things that I've said already: The DETERMINISTIC clause is a
characteristics clause that means the input determines the output reliably ... The statement for
calling a procedure is CALL procedure_name (parameter list). Well, I guess that's about enough
time.

Answer

Okay. The answer is that you'd make a procedure with a body that contains a a "SELECT 'Hello,
world'" statement.

 Copyright © 2005, MySQL AB Page 12

mysql> CREATE PROCEDURE p4 () SELECT 'Hello, world' //
Query OK, 0 rows affected (0.00 sec)

mysql> CALL p4()//
+--------------+
| Hello, world |
+--------------+
| Hello, world |
+--------------+
1 row in set (0.00 sec)
Query OK, 0 rows affected (0.00 sec)

Parameters

Let's look more closely at how you can define parameters in a stored procedure.

1. CREATE PROCEDURE p5
 () ...

2. CREATE PROCEDURE p5
 ([IN] name data-type) ...

3. CREATE PROCEDURE p5
 (OUT name data-type) ...

4. CREATE PROCEDURE p5
 (INOUT name data-type) ...

Recall that the parameter list is what's between the parentheses just after the stored procedure
name.

In the first example the parameter list is empty.

In the second example there is one input parameter. The word IN is optional because parameters
are IN (input) by default.

In the third example there is one output parameter.

In the fourth example there is one parameter which is both input and output.

 Copyright © 2005, MySQL AB Page 13

IN example

mysql> CREATE PROCEDURE p5(p INT) SET @x = p //
Query OK, 0 rows affected (0.00 sec)
mysql> CALL p5(12345)//
Query OK, 0 rows affected (0.00 sec)
mysql> SELECT @x//
+-------+
| @x |
+-------+
| 12345 |
+-------+
1 row in set (0.00 sec)

The IN example shows a procedure with an input parameter. In the body of the procedure, I say
that I want to set a session variable named x to the value of whatever the value of the parameter
p is. Then I call the procedure and pass 12345 as the argument for parameter p. Then I select the
session variable, to prove that it got the value that I passed, 12345.

OUT example

mysql> CREATE PROCEDURE p6 (OUT p INT)
 -> SET p = -5 //
mysql> CALL p6(@y)//
mysql> SELECT @y//
+------+
| @y |
+------+
| -5 |
+------+

Now here's an example where I go the other way. This time p is the name of an output parameter
and I'm passing its value to a session variable named @y, in the CALL statement.

In the body of the procedure, I say that the parameter will get the value minus 5. And after I call
the procedure, I see that is what happened. So the word OUT tells the DBMS that the value goes
out from the procedure.

The effect is the same as if I had executed the statement “SET @y = -5;”.

Compound Statements

Let's expand what's in the procedure body now.

CREATE PROCEDURE p7 ()
BEGIN
 SET @a = 5;
 SET @b = 5;
 INSERT INTO t VALUES (@a);
 SELECT s1 * @a FROM t WHERE s1 >= @b;
END; // /* I won't CALL this. */

 Copyright © 2005, MySQL AB Page 14

The construct you need, in order to do this, is a BEGIN/END block. This is similar to the
BEGIN/END blocks that appear in languages like Pascal, or to the braces that appear in
languages like C. You use the block to enclose multiple statements. In this example, I've
put in a couple of statements that change the value of some session variables, and then I've done
some insert and select statements.

You need a BEGIN/END block whenever you have more than one statement in the procedure.
But that's not all. The BEGIN/END block, also called a compound statement, is the place where
you can define variables and flow-of-control.

The New SQL Statements

Variables

The statement you use to define variables in a compound statement is DECLARE.

(1) Example with two DECLARE statements

CREATE PROCEDURE p8 ()
BEGIN
 DECLARE a INT;
 DECLARE b INT;
 SET a = 5;
 SET b = 5;
 INSERT INTO t VALUES (a);
 SELECT s1 * a FROM t WHERE s1 >= b;
END; // /* I won't CALL this */

You don't really define variables within the stored procedure. You define them within the
BEGIN/END block.

Notice that these variables are not like session variables:

You don't start them with an at sign (@).

You must declare them explicitly at the start of the BEGIN/END block, along with their data types.

Once you've declared a variable, you can use it anywhere that you would otherwise use any
session variable, or literal, or column name.

(2) Example with no DEFAULT clause and SET statement

CREATE PROCEDURE p9 ()
BEGIN
 DECLARE a INT /* there is no DEFAULT clause */;
 DECLARE b INT /* there is no DEFAULT clause */;
 SET a = 5; /* there is a SET statement */
 SET b = 5; /* there is a SET statement */
 INSERT INTO t VALUES (a);
 SELECT s1 * a FROM t WHERE s1 >= b;
END; // /* I won't CALL this */

There are several ways to initialize a variable. When declared without a DEFAULT clause, the
initial value of a variable is always NULL. You can use the SET statement to assign another value
to a variable at any time.

 Copyright © 2005, MySQL AB Page 15

(3) Example with DEFAULT clause

CREATE PROCEDURE p10 ()
BEGIN
 DECLARE a, b INT DEFAULT 5;
 INSERT INTO t VALUES (a);
 SELECT s1 * a FROM t WHERE s1 >= b;
END; //

Here's a variation that does the same thing. This time I'm putting both variable declarations on the
same line and using a DEFAULT clause to set the initial value, rather than doing two separate
DECLARE and SET statements.

(4) Example of CALL

mysql> CALL p10() //
+--------+
| s1 * a |
+--------+
| 25 |
| 25 |
+--------+
2 rows in set (0.00 sec)
Query OK, 0 rows affected (0.00 sec)

Once again, I'm just calling the procedure to show you that it works.

(5) Scope

CREATE PROCEDURE p11 ()
BEGIN
 DECLARE x1 CHAR(5) DEFAULT 'outer';
 BEGIN
 DECLARE x1 CHAR(5) DEFAULT 'inner';
 SELECT x1;
 END;
 SELECT x1;
 END; //

Now let's think about scope. This Scope Example procedure has a BEGIN/END block within
another BEGIN/END block. That's fine, perfectly legal.

It also has two variables, both named x1. That's still legal. In this case, the inner variable
declaration takes precedence as long as it's in scope.

The point is that the inner variable disappears when the first END is reached. That's what "out of
scope" means. The variable ceases to be visible at this point. Therefore you can never see a
declared variable outside a stored procedure; however, you can assign it to an OUT parameter or
assign it to a session variable.

 Copyright © 2005, MySQL AB Page 16

So now I'll call the Scope Example procedure.

mysql> CALL p11()//
+-------+
| x1 |
+-------+
| inner |
+-------+
+-------+
| x1 |
+-------+
| outer |
+-------+

What you see in the output is: that the first SELECT retrieves the inner variable, and the second
SELECT retrieves the outer variable.

Conditions and IF-THEN-ELSE

1.

Now we can do something that involves conditions.

CREATE PROCEDURE p12 (IN parameter1 INT)
BEGIN
 DECLARE variable1 INT;
 SET variable1 = parameter1 + 1;
 IF variable1 = 0 THEN
 INSERT INTO t VALUES (17);
 END IF;
 IF parameter1 = 0 THEN
 UPDATE t SET s1 = s1 + 1;
 ELSE
 UPDATE t SET s1 = s1 + 2;
 END IF;
END; //

Here's a stored procedure that contains an IF statement. Well, it contains two, actually. One is
just IF dah-dah-dah END IF. The other is IF dah-dah-dah ELSE dah-dah-dah END IF.

I'm trying to show that it's possible to have something complex, but at the same time I'm trying to
keep it simple enough that you can figure out what's happening.

2.

CALL p12 (0) //

Suppose we call this procedure and pass a zero. So parameter1 will be zero.

 Copyright © 2005, MySQL AB Page 17

3.

CREATE PROCEDURE p12 (IN parameter1 INT)
BEGIN
 DECLARE variable1 INT;
 SET variable1 = parameter1 + 1; <--
 IF variable1 = 0 THEN
 INSERT INTO t VALUES (17);
 END IF;
 IF parameter1 = 0 THEN
 UPDATE t SET s1 = s1 + 1;
 ELSE
 UPDATE t SET s1 = s1 + 2;
 END IF;
END; //

The first thing that happens is that variable1 gets set to parameter1 plus one, which means it gets
set to zero plus one -- so it will be one.

4.

CREATE PROCEDURE p12 (IN parameter1 INT)
BEGIN
 DECLARE variable1 INT;
 SET variable1 = parameter1 + 1;
 IF variable1 = 0 THEN <--
 INSERT INTO t VALUES (17);
 END IF;
 IF parameter1 = 0 THEN
 UPDATE t SET s1 = s1 + 1;
 ELSE
 UPDATE t SET s1 = s1 + 2;
 END IF;
END; //

The next thing that happens is nothing. Since variable1 is one, the condition "if variable1 = 0" isn't
true. Therefore everything between the IF and the END IF gets skipped.

5.

CREATE PROCEDURE p12 (IN parameter1 INT)
BEGIN
 DECLARE variable1 INT;
 SET variable1 = parameter1 + 1;
 IF variable1 = 0 THEN
 INSERT INTO t VALUES (17);
 END IF;
 IF parameter1 = 0 THEN <--
 UPDATE t SET s1 = s1 + 1;
 ELSE
 UPDATE t SET s1 = s1 + 2;
 END IF;
END; //

 Copyright © 2005, MySQL AB Page 18

So now we go on to the second IF statement. And for this statement, the condition is true,
because we know that parameter1 equals zero. That's what we passed.

6.

CREATE PROCEDURE p12 (IN parameter1 INT)
BEGIN
 DECLARE variable1 INT;
 SET variable1 = parameter1 + 1;
 IF variable1 = 0 THEN
 INSERT INTO t VALUES (17);
 END IF;
 IF parameter1 = 0 THEN
 UPDATE t SET s1 = s1 + 1; <--
 ELSE
 UPDATE t SET s1 = s1 + 2;
 END IF;
END; //

And since it's true that parameter1 equals zero, this UPDATE is executed. If it had been false, or
if parameter1 had been null, the other UPDATE would have been executed instead.

There are currently two rows in table t, and they both contain the value 5, so now if we call p12,
both rows should contain 6.

7.

mysql> CALL p12(0)//
Query OK, 2 rows affected (0.28 sec)

mysql> SELECT * FROM t//
+------+
| s1 |
+------+
| 6 |
| 6 |
+------+
2 rows in set (0.01 sec)

And wow, they do.

CASE

1.

CREATE PROCEDURE p13 (IN parameter1 INT)
BEGIN
 DECLARE variable1 INT;
 SET variable1 = parameter1 + 1;
 CASE variable1
 WHEN 0 THEN INSERT INTO t VALUES (17);
 WHEN 1 THEN INSERT INTO t VALUES (18);
 ELSE INSERT INTO t VALUES (19);
 END CASE;
END; //

 Copyright © 2005, MySQL AB Page 19

In addition to the IF statement, there is another way to check for conditions and take paths
according to whether expressions are true or non-true. It's the CASE statement.

This CASE statement could just as easily have been expressed with IF statements. If the value of
variable1 is zero, then insert seventeen into table t. If it's one, then insert eighteen. If it's neither
zero nor one, then insert nineteen.

2.

mysql> CALL p13(1)//
Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM t//
+------+
| s1 |
+------+
| 6 |
| 6 |
| 19 |
+------+
3 rows in set (0.00 sec)

So we execute the procedure, passing a one. We expect that the result is that a value of nineteen
will be inserted into table t.

And there it is. It's nice to see how predictable procedures are.

Question

QUESTION: WHAT DOES CALL p13(NULL) // do?

And now, another assignment. The question is: what will this CALL statement do? You can either
find out by executing it and then seeing what the SELECT does, or you can figure it out by
looking at the code. Give yourself five seconds to figure it out.

Answer

mysql> CALL p13(NULL)//
Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM t//
+------+
| s1 |
+------+
| 6 |
| 6 |
| 19 |
| 19 |
+------+
4 rows in set (0.00 sec)

Okay, the answer is that when you call procedure p13, MySQL inserts one more row containing
19. The reason is, of course, that since the value of variable1 is NULL, the ELSE portion of the
CASE statement is processed. I am hoping that makes sense to everyone. Remember that if you
can't understand an answer, it's okay, we'll just keep going forward as if you do.

 Copyright © 2005, MySQL AB Page 20

Loops

WHILE ... END WHILE
LOOP ... END LOOP
REPEAT ... END REPEAT
GOTO

Now we're going to make some loops. There are actually three standard ways to loop: WHILE
loops, LOOP loops, and REPEAT loops. There's also a non-standard way, GO
TO.

WHILE ... END WHILE

CREATE PROCEDURE p14 ()
BEGIN
 DECLARE v INT;
 SET v = 0;
 WHILE v < 5 DO
 INSERT INTO t VALUES (v);
 SET v = v + 1;
 END WHILE;
END; //

Here's one way, the WHILE loop. It's my favourite because it looks much like an IF statement, so
there's less new syntax to learn.

The INSERT and the SET statements here, which are between the WHILE and the END WHILE,
happen over and over until the value in variable v becomes greater than or equal to five. I said
“SET v = 0;” first to avoid a common trap: if I don't initialize a variable with DEFAULT or SET,
then it's NULL, and adding 1 to NULL always yields NULL.

WHILE ... END WHILE example

mysql> CALL p14()//
Query OK, 1 row affected (0.00 sec)

Here's what happens when we CALL procedure p14.

Try not to worry that it says "one row affected" instead of "five rows affected". The count applies
only for the last INSERT.

 Copyright © 2005, MySQL AB Page 21

WHILE ... END WHILE example: CALL

mysql> select * from t; //
+------+
| s1 |
+------+
....
| 0 |
| 1 |
| 2 |
| 3 |
| 4 |
+------+
9 rows in set (0.00 sec)

And here you see that five inserts happened when we did the CALL.

REPEAT ... END REPEAT

CREATE PROCEDURE p15 ()
BEGIN
 DECLARE v INT;
 SET v = 0;
 REPEAT
 INSERT INTO t VALUES (v);
 SET v = v + 1;
 UNTIL v >= 5
 END REPEAT;
END; //

Here's another way of doing a loop, the REPEAT loop. It's doing the same thing as the WHILE
loop did, except that it checks the condition after doing the statements, instead
of checking the condition before doing the statements, as the WHILE loop did.

REPEAT ... END REPEAT: look at the UNTIL

CREATE PROCEDURE p15 ()
BEGIN
 DECLARE v INT;
 SET v = 0;
 REPEAT
 INSERT INTO t VALUES (v);
 SET v = v + 1;
 UNTIL v >= 5 <--
 END REPEAT;
END; //

Note that there is no semicolon after the UNTIL clause in this procedure statement. This is one of
the few times that you can have trouble with semicolon rules. Normally it's okay if you put an
extra semicolon in somewhere, which is what I tend to do.

 Copyright © 2005, MySQL AB Page 22

REPEAT ... END REPEAT: calling

mysql> CALL p15()//
Query OK, 1 row affected (0.00 sec)

mysql> SELECT COUNT(*) FROM t//
+----------+
| COUNT(*) |
+----------+
| 14 |
+----------+
1 row in set (0.00 sec)

And here you see that five more inserts happened when we called procedure p15.

LOOP ... END LOOP

CREATE PROCEDURE p16 ()
BEGIN
 DECLARE v INT;
 SET v = 0;
 loop_label: LOOP
 INSERT INTO t VALUES (v);
 SET v = v + 1;
 IF v >= 5 THEN
 LEAVE loop_label;
 END IF;
 END LOOP;
END; //

Here's another way to write a loop: the LOOP loop. The LOOP loop doesn't have to have a
condition at the start, like a WHILE loop does. And it doesn't have to have a condition at the end,
like a REPEAT loop does.

LOOP ... END LOOP: with IF and LEAVE

CREATE PROCEDURE p16 ()
BEGIN
 DECLARE v INT;
 SET v = 0;
 loop_label: LOOP
 INSERT INTO t VALUES (v);
 SET v = v + 1;
 IF v >= 5 THEN <--
 LEAVE loop_label;
 END IF;
 END LOOP;
END; //

Instead, you put an IF statement somewhere inside the loop.

And inside that IF statement, you put a LEAVE statement. The LEAVE statement means "exit the
loop". The actual syntax of the LEAVE statement is the word LEAVE and a statement label. I'll
talk more about this statement label in a moment.

 Copyright © 2005, MySQL AB Page 23

LOOP ... END LOOP: calling

mysql> CALL p16()//
Query OK, 1 row affected (0.00 sec)

mysql> SELECT COUNT(*) FROM t//
+----------+
| COUNT(*) |
+----------+
| 19 |
+----------+
1 row in set (0.00 sec)

Let's call procedure p16. The result is that another 5 rows are inserted into table t.

Labels

CREATE PROCEDURE p17 ()
label_1: BEGIN
 label_2: WHILE 0 = 1 DO LEAVE label_2; END
WHILE;
 label_3: REPEAT LEAVE label_3; UNTIL 0 =0
END REPEAT;
 label_4: LOOP LEAVE label_4; END LOOP;
END; //

In the last LOOP example, I used a statement label. Now here is an example of a procedure with
four statement labels. It's possible to use a statement label before BEGIN, before WHILE, before
REPEAT, or before LOOP. Those are the only places where a statement label is a legal start to a
statement.

Thus the statement “LEAVE label_3 doesn't mean “jump to label_3”. Rather, it means “leave the
(compound or looping) statement which is identified by label_3”.

End Labels

CREATE PROCEDURE p18 ()
label_1: BEGIN
 label_2: WHILE 0 = 1 DO LEAVE label_2; END
WHILE label_2;
 label_3: REPEAT LEAVE label_3; UNTIL 0 =0
END REPEAT label_3 ;
 label_4: LOOP LEAVE label_4; END LOOP
label_4 ;
END label_1 ; //

One can also have statement labels at the end, as well as at the start, of these same statements.
These ending labels aren't terribly useful. They're optional. If you put one in, it has to be the same
as the starting label. In a long piece of code, the end label can prevent confusion -- it's easier to
see what end goes with what start.

 Copyright © 2005, MySQL AB Page 24

LEAVE and Labels

CREATE PROCEDURE p19 (parameter1 CHAR)
label_1: BEGIN
 label_2: BEGIN
 label_3: BEGIN
 IF parameter1 IS NOT NULL THEN
 IF parameter1 = 'a' THEN
 LEAVE label_1;
 ELSE BEGIN
 IF parameter1 = 'b' THEN
 LEAVE label_2;
 ELSE
 LEAVE label_3;
 END IF;
 END;
 END IF;
 END IF;
 END;
 END;
END;//

LEAVE statements get me out of deeply-nested compound statements, too.

ITERATE

There is one other thing that labels are necessary for, as targets for ITERATE statements.

CREATE PROCEDURE p20 ()
BEGIN
 DECLARE v INT;
 SET v = 0;
 loop_label: LOOP
 IF v = 3 THEN
 SET v = v + 1;
 ITERATE loop_label;
 END IF;
 INSERT INTO t VALUES (v);
 SET v = v + 1;
 IF v >= 5 THEN
 LEAVE loop_label;
 END IF;
 END LOOP;
END; //

The ITERATE statement, like the LEAVE statement, appears within loops and refers to loop
labels. In that case, ITERATE means "start the loop again".

ITERATE is a bit like “continue” in the C language.

(Also: The ITERATE statement, like the LEAVE statement, appears within compound statements
and refers to compound-statement labels. In that case, ITERATE means “start the compound
statement again”. But I haven't illustrated that here.)

So, for this example, let's start walking through this loop. We'll do it a few times.

 Copyright © 2005, MySQL AB Page 25

ITERATE: Walking through the loop

CREATE PROCEDURE p20 ()
BEGIN
 DECLARE v INT;
 SET v = 0;
 loop_label: LOOP <--
 IF v = 3 THEN
 SET v = v + 1;
 ITERATE loop_label;
 END IF;
 INSERT INTO t VALUES (v);
 SET v = v + 1;
 IF v >= 5 THEN
 LEAVE loop_label;
 END IF;
 END LOOP;
END; //

We're looping through a loop labeled with loop_label.

ITERATE: Walking through the loop

CREATE PROCEDURE p20 ()
BEGIN
 DECLARE v INT;
 SET v = 0;
 loop_label: LOOP
 IF v = 3 THEN <--
 SET v = v + 1;
 ITERATE loop_label;
 END IF;
 INSERT INTO t VALUES (v);
 SET v = v + 1;
 IF v >= 5 THEN
 LEAVE loop_label;
 END IF;
 END LOOP;
END; //

Eventually the value of v will be three. Then we'll increase it to four.

 Copyright © 2005, MySQL AB Page 26

ITERATE: walking through the loop

CREATE PROCEDURE p20 ()
BEGIN
 DECLARE v INT;
 SET v = 0;
 loop_label: LOOP
 IF v = 3 THEN
 SET v = v + 1;
 ITERATE loop_label; <--
 END IF;
 INSERT INTO t VALUES (v);
 SET v = v + 1;
 IF v >= 5 THEN
 LEAVE loop_label;
 END IF;
 END LOOP;
END; //

Then we'll do the ITERATE.

ITERATE: walking through the loop

CREATE PROCEDURE p20 ()
BEGIN
 DECLARE v INT;
 SET v = 0;
 loop_label: LOOP <--
 IF v = 3 THEN
 SET v = v + 1;
 ITERATE loop_label;
 END IF;
 INSERT INTO t VALUES (v);
 SET v = v + 1;
 IF v >= 5 THEN
 LEAVE loop_label;
 END IF;
 END LOOP;
END; //

Which causes execution to start again at the beginning of the loop.

 Copyright © 2005, MySQL AB Page 27

ITERATE: walking through the loop

CREATE PROCEDURE p20 ()
BEGIN
 DECLARE v INT;
 SET v = 0;
 loop_label: LOOP
 IF v = 3 THEN
 SET v = v + 1;
 ITERATE loop_label;
 END IF;
 INSERT INTO t VALUES (v);
 SET v = v + 1;
 IF v >= 5 THEN
 LEAVE loop_label; <--
 END IF;
 END LOOP;
END; //

Then variable v becomes five, so we reach the LEAVE statement.

ITERATE: walking through the loop

CREATE PROCEDURE p20 ()
BEGIN
 DECLARE v INT;
 SET v = 0;
 loop_label: LOOP
 IF v = 3 THEN
 SET v = v + 1;
 ITERATE loop_label;
 END IF;
 INSERT INTO t VALUES (v);
 SET v = v + 1;
 IF v >= 5 THEN
 LEAVE loop_label;
 END IF;
 END LOOP;
END; // <--

As a result of the LEAVE, we exit the loop and reach the end of the compound statement.

GOTO

CREATE PROCEDURE p...
BEGIN
...
LABEL label_name;
...
GOTO label_name;
...
END;

MySQL also has a GOTO statement that you can use to write a stored procedure. This is

 Copyright © 2005, MySQL AB Page 28

not standard SQL, and the way that we form a label for the GOTO is not the usual way that we
form a label. This statement was thrown in for compatibility with other DBMSs which use GOTO.
We don't mention GOTO in the MySQL Reference Manual.

Grand combination

CREATE PROCEDURE p21
(IN parameter_1 INT, OUT parameter_2 INT)
LANGUAGE SQL DETERMINISTIC SQL SECURITY INVOKER
BEGIN
 DECLARE v INT;
 label goto_label; start_label: LOOP
 IF v = v THEN LEAVE start_label;
 ELSE ITERATE start_label;
 END IF;
 END LOOP start_label;
 REPEAT
 WHILE 1 = 0 DO BEGIN END;
 END WHILE;
 UNTIL v = v END REPEAT;
 GOTO goto_label;
END;//

Here's a statement that has everything in it that you've seen so far. This is a procedure with
parameters, characteristics, a BEGIN/END block, statements within statements, a variable
declaration, an IF, a WHILE, a LOOP, a REPEAT, a LEAVE, an ITERATE, and a GOTO.

It's a ridiculous procedure and I wouldn't run it because it contains infinite loops. But it does
contain all legal syntax.

These are all the new flow-of-control and variable declaration statements. Now, I'm going to move
on to a different thing.

Error Handling

Summary of the next few pages:
 Sample Problem
 Handlers
 Conditions

Okay, the thing we're moving on to now is error handling.

1. Sample Problem: Log Of Failures

When INSERT fails, I want to record the failure in a log file.

The sample problem we'll use to show error handling is a common one. I want to have a
log of errors. When an INSERT fails, I want to put a notice into a separate file somewhere that the
insert failed, when it failed, and why it failed. Let's say that I'm particularly interested in inserts
because of violations of foreign-key constraints.

 Copyright © 2005, MySQL AB Page 29

2. Sample Problem: Log Of Failures (2)

mysql> CREATE TABLE t2
 s1 INT, PRIMARY KEY (s1))
 engine=innodb;//
mysql> CREATE TABLE t3 (s1 INT, KEY (s1),
 FOREIGN KEY (s1) REFERENCES t2 (s1))
 engine=innodb;//
mysql> INSERT INTO t3 VALUES (5);//
...
ERROR 1216 (23000): Cannot add or update a child row: a foreign key
constraint fails

I start off by making a primary-key table, and a foreign-key table. I'm using InnoDB, so foreign key
checks should work. Then I try to insert a value in the foreign-key table that
isn't in the primary-key table. That will fail, I know. This is just a quick way to find out what the
error number is for the condition. It's Error Number one two one six.

3. Sample Problem: Log Of Failures

CREATE TABLE error_log (error_message
CHAR(80))//

Next, I make a table in which I am going to store errors that occur when I'm trying to do my
inserts.

4. Sample Problem: Log Of Errors

CREATE PROCEDURE p22 (parameter1 INT)
BEGIN
 DECLARE EXIT HANDLER FOR 1216
 INSERT INTO error_log VALUES
 (CONCAT('Time: ',current_date,
 '. Foreign Key Reference Failure For
Value = ',parameter1));
 INSERT INTO t3 VALUES (parameter1);
END;//

Here's my procedure. The first statement here, DECLARE EXIT HANDLER, is what handles
exceptions. This is saying that if error one two one six happens, then the procedure will insert a
row into the error log table. The word EXIT means "we'll exit from the compound statement when
we're done".

5. Sample Problem: Log Of Errors

CALL p22 (5) //

Now let's call the procedure. It will fail, of course, because the value five doesn't appear in the
primary key table. But there is no error return, because the error is handled inside the procedure.

When I look at the contents of table t3, I see that nothing got inserted into table t3. But when I
look at the contents of table error_log, I see that something did get added into table error_log.
This tells me that an INSERT into table t3 failed.

 Copyright © 2005, MySQL AB Page 30

DECLARE HANDLER syntax

DECLARE
{ EXIT | CONTINUE }
HANDLER FOR
{ error-number | { SQLSTATE error-string } | condition }
SQL statement

Okay, so that's how a handler works. It's a piece of code that gets triggered when an error
happens. MySQL in fact allows two kinds of handlers. One is the EXIT handler, which we just
saw.

Next we'll look at the other kind of handler, the CONTINUE handler. It's similar to the EXIT
handler, but after it executes, the play continues. There's no exit from the compound statement.

1. DECLARE CONTINUE HANDLER example

CREATE TABLE t4 (s1 int,primary key(s1));//
CREATE PROCEDURE p23 ()
BEGIN
 DECLARE CONTINUE HANDLER
 FOR SQLSTATE '23000' SET @x2 = 1;
 SET @x = 1;
 INSERT INTO t4 VALUES (1);
 SET @x = 2;
 INSERT INTO t4 VALUES (1);
 SET @x = 3;
 END;//

There's an example of a CONTINUE handler in the MySQL Reference Manual, and it's so good
that I'll just copy it here.

This will demonstrate how a continue handler works.

2. DECLARE CONTINUE HANDLER

CREATE TABLE t4 (s1 int,primary key(s1));//
CREATE PROCEDURE p23 ()
BEGIN
 DECLARE CONTINUE HANDLER
 FOR SQLSTATE '23000' SET @x2 = 1; <--
 SET @x = 1;
 INSERT INTO t4 VALUES (1);
 SET @x = 2;
 INSERT INTO t4 VALUES (1);
 SET @x = 3;
 END;//

I'll define the handler for an SQLSTATE value this time. Remember that I used a MySQL error
code last time, error one two one six. Actually, SQLSTATE two three zero
zero zero is a little more general. It happens for either a foreign-key violation or a primary-key
violation.

 Copyright © 2005, MySQL AB Page 31

3. DECLARE CONTINUE HANDLER

CREATE TABLE t4 (s1 int,primary key(s1));//
CREATE PROCEDURE p23 ()
BEGIN
 DECLARE CONTINUE HANDLER
 FOR SQLSTATE '23000' SET @x2 = 1;
 SET @x = 1; <--
 INSERT INTO t4 VALUES (1);
 SET @x = 2;
 INSERT INTO t4 VALUES (1);
 SET @x = 3;
 END;//

The first statement of this procedure that gets executed is "SET @x = 1".

4. DECLARE CONTINUE HANDLER example

CREATE TABLE t4 (s1 int,primary key(s1));//
CREATE PROCEDURE p23 ()
BEGIN
 DECLARE CONTINUE HANDLER
 FOR SQLSTATE '23000' SET @x2 = 1;
 SET @x = 1;
 INSERT INTO t4 VALUES (1);
 SET @x = 2;
 INSERT INTO t4 VALUES (1); <--
 SET @x = 3;
 END;//

Then the value one gets inserted into the primary-key table.

5. DECLARE CONTINUE HANDLER

CREATE TABLE t4 (s1 int,primary key(s1));//
CREATE PROCEDURE p23 ()
BEGIN
 DECLARE CONTINUE HANDLER
 FOR SQLSTATE '23000' SET @x2 = 1;
 SET @x = 1;
 INSERT INTO t4 VALUES (1);
 SET @x = 2; <--
 INSERT INTO t4 VALUES (1);
 SET @x = 3;
 END;//

Then the value of @x becomes two.

6. DECLARE CONTINUE HANDLER example

CREATE TABLE t4 (s1 int,primary key(s1));//
CREATE PROCEDURE p23 ()
BEGIN
 DECLARE CONTINUE HANDLER
 FOR SQLSTATE '23000' SET @x2 = 1;

 Copyright © 2005, MySQL AB Page 32

 SET @x = 1;
 INSERT INTO t4 VALUES (1);
 SET @x = 2;
 INSERT INTO t4 VALUES (1); <--
 SET @x = 3;
 END;//

Then an attempt is made to insert the same value into the primary-key table again. But it fails,
because primary keys must be unique.

7. DECLARE CONTINUE HANDLER example

CREATE TABLE t4 (s1 int,primary key(s1));//
CREATE PROCEDURE p23 ()
BEGIN
 DECLARE CONTINUE HANDLER
 FOR SQLSTATE '23000' SET @x2 = 1; <--
 SET @x = 1;
 INSERT INTO t4 VALUES (1);
 SET @x = 2;
 INSERT INTO t4 VALUES (1);
 SET @x = 3;
 END;//

Now, because the insert fails, the handler takes over. The next statement that gets executed is
the handler's statement, so @x2 gets set to one.

8. DECLARE CONTINUE HANDLER example

CREATE TABLE t4 (s1 int,primary key(s1));//
CREATE PROCEDURE p23 ()
BEGIN
 DECLARE CONTINUE HANDLER
 FOR SQLSTATE '23000' SET @x2 = 1;
 SET @x = 1;
 INSERT INTO t4 VALUES (1);
 SET @x = 2;
 INSERT INTO t4 VALUES (1);
 SET @x = 3; <--
 END;//

But that's not the end. This is a CONTINUE handler. So now the procedure goes back to where
we were, after the failed insert statement. And it sets @x to three.
9. DECLARE CONTINUE HANDLER example

mysql> CALL p23()//
Query OK, 0 rows affected (0.00 sec)
mysql> SELECT @x, @x2//
+------+------+
| @x | @x2 |
+------+------+
| 3 | 1 |
+------+------+
1 row in set (0.00 sec)

Run the procedure.

 Copyright © 2005, MySQL AB Page 33

Here we look at the value of @x. And sure enough, it is three.

Next we look at the value of @x2. And sure enough, it is one.

So that's our proof that the operation was processed in the way that I described.

People can take a bit of time to adjust to handlers. The check is at the start of the statement
block, instead of right after the statement that might cause the error, so it looks as if we are
jumping around. But it's quite a safe and clean way to code.

1. DECLARE CONDITION

CREATE PROCEDURE p24 ()
BEGIN
 DECLARE `Constraint Violation`
 CONDITION FOR SQLSTATE '23000';
 DECLARE EXIT HANDLER FOR
 `Constraint Violation` ROLLBACK;
 START TRANSACTION;
 INSERT INTO t2 VALUES (1);
 INSERT INTO t2 VALUES (1);
 COMMIT;
 END; //

There's another variation on the error handler theme. You can, in effect, give the SQLSTATE or
the error code another name. And then you can use that name in a handler. Let's see how that
works.

Recall that I defined table t2 as an InnoDB table, so the INSERTs that I make into this table will
be subject to ROLLBACK. And a ROLLBACK is precisely what will happen.
Because inserting the same value twice into a primary key will cause SQLSTATE '23000' to
happen, and I say here that SQLSTATE '23000' is a constraint violation.

2. DECLARE CONDITION

CREATE PROCEDURE p24 ()
BEGIN
 DECLARE `Constraint Violation`
 CONDITION FOR SQLSTATE '23000';
 DECLARE EXIT HANDLER FOR
 `Constraint Violation` ROLLBACK;
 START TRANSACTION;
 INSERT INTO t2 VALUES (1);
 INSERT INTO t2 VALUES (1);
 COMMIT;
 END; //

And I say here that a constraint violation causes ROLLBACK. LSTATE '23000' to happen, and I
say here that SQLSTATE '23000' is a constraint violation.

 Copyright © 2005, MySQL AB Page 34

3. DECLARE CONDITION

mysql> CALL p24()//
Query OK, 0 rows affected (0.28 sec)

mysql> SELECT * FROM t2//
Empty set (0.00 sec)

So let's call the procedure. And let's see what the result was.

Yes, we see that nothing got INSERTed into table t2. The entire transaction was rolled back.
That's the result I wanted.

4. DECLARE CONDITION

mysql> CREATE PROCEDURE p9 ()
 -> BEGIN
 -> DECLARE EXIT HANDLER FOR NOT FOUND BEGIN END;
 -> DECLARE EXIT HANDLER FOR SQLEXCEPTION BEGIN END;
 -> DECLARE EXIT HANDLER FOR SQLWARNING BEGIN END;
 -> END;//
Query OK, 0 rows affected (0.00 sec)

There are three predeclared conditions: NOT FOUND (no more rows), SQLEXCEPTION (error),
SQLWARNING (warning or note). Since they're predefined, you can use them without saying
DECLARE CONDITION. Indeed, if you tried to say something like “DECLARE SQLEXCEPTION
CONDITION ...” you'd get an error message.

Cursors

Summary of things that we can do with cursors:

DECLARE cursor-name CURSOR FOR SELECT ...;
OPEN cursor-name;
FETCH cursor-name INTO variable [, variable];
CLOSE cursor-name;

Now let's look at cursors. We have a somewhat incomplete implementation of the syntax for
cursors inside stored procedures. But we can do the main things. We can declare a cursor, we
can open it, we can fetch from it, and we can close it.

 Copyright © 2005, MySQL AB Page 35

1. Cursor Example

CREATE PROCEDURE p25 (OUT return_val INT)
BEGIN
 DECLARE a,b INT;
 DECLARE cur_1 CURSOR FOR SELECT s1 FROM t;
 DECLARE CONTINUE HANDLER FOR NOT FOUND
 SET b = 1;
 OPEN cur_1;
 REPEAT
 FETCH cur_1 INTO a;
 UNTIL b = 1
 END REPEAT;
 CLOSE cur_1;
 SET return_val = a;
END;//

Let's walk through a new example with a procedure that contains cursor statements.

2. Cursor Example

CREATE PROCEDURE p25 (OUT return_val INT)
BEGIN
 DECLARE a,b INT; <--
 DECLARE cur_1 CURSOR FOR SELECT s1 FROM t;
 DECLARE CONTINUE HANDLER FOR NOT FOUND
 SET b = 1;
 OPEN cur_1;
 REPEAT
 FETCH cur_1 INTO a;
 UNTIL b = 1
 END REPEAT;
 CLOSE cur_1;
 SET return_val = a;
END;//

The procedure starts with three variable declarations. Incidentally, the order is important. First
declare variables. Then declare conditions. Then declare cursors. Then, declare handlers. If you
put them in the wrong order, you will get an error message.

 Copyright © 2005, MySQL AB Page 36

3. Cursor Example

CREATE PROCEDURE p25 (OUT return_val INT)
BEGIN
 DECLARE a,b INT;
 DECLARE cur_1 CURSOR FOR SELECT s1 FROM t; <--
 DECLARE CONTINUE HANDLER FOR NOT FOUND
 SET b = 1;
 OPEN cur_1;
 REPEAT
 FETCH cur_1 INTO a;
 UNTIL b = 1
 END REPEAT;
 CLOSE cur_1;
 SET return_val = a;
END;//

We next have a declaration of a cursor. This looks almost exactly like what's in embedded SQL,
for anyone who has worked with that.

4. Cursor Example

CREATE PROCEDURE p25 (OUT return_val INT)
BEGIN
 DECLARE a,b INT;
 DECLARE cur_1 CURSOR FOR SELECT s1 FROM t;
 DECLARE CONTINUE HANDLER FOR NOT FOUND <--
 SET b = 1; <--
 OPEN cur_1;
 REPEAT
 FETCH cur_1 INTO a;
 UNTIL b = 1
 END REPEAT;
 CLOSE cur_1;
 SET return_val = a;
END;//

The final declaration, as I said, is of a handler. This continue handler does not refer to a MySQL
error number or to an SQLSTATE value. Instead it uses NOT FOUND. This happens to be the
same as error one three one six or SQLSTATE '02000'.

 Copyright © 2005, MySQL AB Page 37

5. Cursor Example

CREATE PROCEDURE p25 (OUT return_val INT)
BEGIN
 DECLARE a,b INT;
 DECLARE cur_1 CURSOR FOR SELECT s1 FROM t;
 DECLARE CONTINUE HANDLER FOR NOT FOUND
 SET b = 1;
 OPEN cur_1; <--
 REPEAT
 FETCH cur_1 INTO a;
 UNTIL b = 1
 END REPEAT;
 CLOSE cur_1;
 SET return_val = a;
END;//

The first executable statement is OPEN cur_1. Since cur_1 is associated with "SELECT s1
FROM t", the procedure will SELECT s1 FROM t, producing a result set.

6. Cursor Example

CREATE PROCEDURE p25 (OUT return_val INT)
BEGIN
 DECLARE a,b INT;
 DECLARE cur_1 CURSOR FOR SELECT s1 FROM t;
 DECLARE CONTINUE HANDLER FOR NOT FOUND
 SET b = 1;
 OPEN cur_1;
 REPEAT
 FETCH cur_1 INTO a; <--
 UNTIL b = 1
 END REPEAT;
 CLOSE cur_1;
 SET return_val = a;
END;//

The first FETCH statement here will cause a single row to be retrieved from the result set that the
SELECT produced. Since we know that there are several rows in table t, we know that this
statement will happen several times -- that is, it is in a loop.

 Copyright © 2005, MySQL AB Page 38

7. Cursor Example

CREATE PROCEDURE p25 (OUT return_val INT)
BEGIN
 DECLARE a,b INT;
 DECLARE cur_1 CURSOR FOR SELECT s1 FROM t;
 DECLARE CONTINUE HANDLER FOR NOT FOUND
 SET b = 1; <--
 OPEN cur_1;
 REPEAT
 FETCH cur_1 INTO a;
 UNTIL b = 1
 END REPEAT;
 CLOSE cur_1;
 SET return_val = a;
END;//

Eventually, MySQL will have no more rows to fetch. At that point, we will reach the statement
that's in the CONTINUE handler. That is, set variable b to one.

8. Cursor Example

CREATE PROCEDURE p25 (OUT return_val INT)
BEGIN
 DECLARE a,b INT;
 DECLARE cur_1 CURSOR FOR SELECT s1 FROM t;
 DECLARE CONTINUE HANDLER FOR NOT FOUND
 SET b = 1;
 OPEN cur_1;
 REPEAT
 FETCH cur_1 INTO a;
 UNTIL b = 1
 END REPEAT;
 CLOSE cur_1; <--
 SET return_val = a;
END;//

Therefore the condition UNTIL b = 1 is now true. Therefore the loop ends. So now I close the
cursor. If I didn't, it would be closed automatically when the compound statement ends. But I think
depending on automatic behaviour looks a tad sloppy.

 Copyright © 2005, MySQL AB Page 39

9. Cursor Example

CREATE PROCEDURE p25 (OUT return_val INT)
BEGIN
 DECLARE a,b INT;
 DECLARE cur_1 CURSOR FOR SELECT s1 FROM t;
 DECLARE CONTINUE HANDLER FOR NOT FOUND
 SET b = 1;
 OPEN cur_1;
 REPEAT
 FETCH cur_1 INTO a;
 UNTIL b = 1
 END REPEAT;
 CLOSE cur_1;
 SET return_val = a; <--
END;//

Now we'll assign our local variable to an output parameter, so that the results will be visible after
the procedure finishes.

10. Cursor Example

CREATE PROCEDURE p25 (OUT return_val INT)
BEGIN
 DECLARE a,b INT;
 DECLARE cur_1 CURSOR FOR SELECT s1 FROM t;
 DECLARE CONTINUE HANDLER FOR NOT FOUND
 SET b = 1;
 OPEN cur_1;
 REPEAT
 FETCH cur_1 INTO a;
 UNTIL b = 1
 END REPEAT;
 CLOSE cur_1;
 SET return_val = a;
END;//

mysql> CALL p25(@return_val)//
Query OK, 0 rows affected (0.00 sec)
mysql> SELECT @return_val//
+-------------+
| @return_val |
+-------------+
| 5 |
+-------------+
1 row in set (0.00 sec)

Let's call this procedure.

Here you see that the return_val parameter got a value of 5, which is right, because that is what
is in the last row of table t. So we know that the cursor worked, and we know that the handler
worked.

 Copyright © 2005, MySQL AB Page 40

Cursor Characteristics

Summary:
 READ ONLY
 NOT SCROLLABLE
 ASENSITIVE

In version five of MySQL, you can only fetch from cursors, you cannot update them. That is,
cursors are READ ONLY. You cannot say:

FETCH cursor1 INTO variable1;
UPDATE t1 SET column1 = 'value1' WHERE CURRENT OF cursor1;

Cursors are also NOT SCROLLABLE. That is, you can only fetch the next row, you cannot move
back and forth in the result set. You cannot say:

FETCH PRIOR cursor1 INTO variable1;
FETCH ABSOLUTE 55 cursor1 INTO variable1;

And you should avoid doing updates on a table while you have a cursor open on the same table,
because cursors are ASENSITIVE. That is, if you don't avoid doing updates, we don't guarantee
what the results will be. I know that they can be different if you use the InnoDB storage engine
instead of the MyISAM storage engine.

Security

Privileges (1) CREATE ROUTINE
Privileges (2) EXECUTE
Privileges (3) GRANT SHOW ROUTINE?
Privileges (4) INVOKERS AND DEFINERS

I'm going to say a few things about privileges and security now. But this section will have to be
short, since the security features don't all work yet.

2. Privileges CREATE ROUTINE

GRANT CREATE ROUTINE
ON database-name . *
TO user(s)
[WITH GRANT OPTION];
• But right now, just use 'root'

There is a special privilege for creating procedures or functions, just as there is a special privilege
for creating views or tables. This is the CREATE ROUTINE privilege. The root user has this
privilege. There is also an ALTER ROUTINE privilege.

2. Privileges EXECUTE

GRANT EXECUTE ON p TO peter
[WITH GRANT OPTION];

Also there is a special privilege that says whether you are allowed to use, or execute, a
procedure. The procedure's creator has an EXECUTE privilege automatically.

 Copyright © 2005, MySQL AB Page 41

3. Privileges SHOW ROUTINE?

GRANT SHOW ROUTINE ON db6.* TO joey
[WITH GRANT OPTION];

We do have a privilege already for views: GRANT SHOW VIEW. Based on this precedent, we
might add a new GRANT SHOW ROUTINE privilege someday, for consistency. It's a non-
standard thing to do. At time of writing, there's no such thing.

4. Privileges Invokers and Definers

CREATE PROCEDURE p26 ()
 SQL SECURITY INVOKER
 SELECT COUNT(*) FROM t //
CREATE PROCEDURE p27 ()
 SQL SECURITY DEFINER
 SELECT COUNT(*) FROM t //
GRANT INSERT ON db5.* TO peter; //

Now let's try out the SQL SECURITY clause. Security is one of the characteristics of a procedure
that I mentioned at the start.

You are 'root'. Grant insert rights on your database (db5) to peter. Then start up a new job as
peter, and let's see what peter can do with stored procedures.

Notice: peter does not have the right to select from t. Only root has the right to select from t.

5. Privileges Invokers and Definers

/* Logged on with current_user = peter */

mysql> CALL p26();
ERROR 1142 (42000): select command denied to user
 'peter'@'localhost' for table 't'

mysql> CALL p27();
+----------+
| COUNT(*) |
+----------+
| 1 |
+----------+
1 row in set (0.00 sec)

So when peter tries to call procedure p26, the one with INVOKER security, he fails. That's
because peter can't select from the table. However, when Peter tries to call procedure p27, the
one with DEFINER security, he succeeds. That's because root can select from the table, and
Peter has root's rights as long as the procedure is being executed.

 Copyright © 2005, MySQL AB Page 42

Functions

Summary:
 CREATE FUNCTION
 Limitations of functions

You've now seen pretty well everything that can be in a stored procedure. What you haven't seen,
what I've left unmentioned up till now, is what a stored FUNCTION looks like. So it's function time.

CREATE FUNCTION

CREATE FUNCTION factorial (n DECIMAL(3,0))
 RETURNS DECIMAL(20,0)
 DETERMINISTIC
 BEGIN
 DECLARE factorial DECIMAL(20,0) DEFAULT 1;
 DECLARE counter DECIMAL(3,0);
 SET counter = n;
 factorial_loop: REPEAT
 SET factorial = factorial * counter;
 SET counter = counter - 1;
 UNTIL counter = 1
 END REPEAT;
 RETURN factorial;
 END //

(Source: “Understanding SQL's stored procedures”. Used for example purposes only.)

Functions look a lot like procedures. The only noticeable syntax differences are that we say
create function instead of create procedure, and we need a RETURNS clause to say what the
data type of the function is, and we need a RETURN statement because a function must return a
value.

This example comes courtesy of a book by Jim Melton, a member of the SQL standard
committee. The book is called "Understanding SQL's stored procedures". This example is on
page 223 of that book. I decided to use it because MySQL uses standard SQL, and so the
example in the book works out of the box. I only had to clear up two typos.

2. Examples

INSERT INTO t VALUES (factorial(pi)) //
SELECT s1, factorial (s1) FROM t //
UPDATE t SET s1 = factorial(s1)
WHERE factorial(s1) < 5 //

Now that I've got my function, I can just plop it into any SQL statement, and it will look like any
other function.

To put it mildly, this is beautiful. So why am I just mentioning functions as if they're minor?
Because they have a flaw, which makes them less useful than procedures. That flaw is: you
cannot access tables from within a function.

 Copyright © 2005, MySQL AB Page 43

3. Limitations

Illegal:
 ALTER 'CACHE INDEX' CALL COMMIT CREATE DELETE
 DROP 'FLUSH PRIVILEGES' GRANT INSERT KILL
 LOCK OPTIMIZE REPAIR REPLACE REVOKE
 ROLLBACK SAVEPOINT 'SELECT FROM table'
 'SET system variable' 'SET TRANSACTION'
 SHOW 'START TRANSACTION' TRUNCATE UPDATE

There are many things you can't do with functions because of the fact that you can't touch tables.
You can't do any data manipulation, data description, changing of privileges, or transaction
control. We're working on it! Maybe they'll be possible, um, real soon now.

4. Limitations

Legal:
 'BEGIN END' DECLARE IF ITERATE LOOP
 REPEAT RETURN 'SET declared variable'
 WHILE

All you can do is set variables, and use them with the new flow of control statements. This is
actually quite powerful, but it is nowhere near what people want to be able to do.

Metadata

Summary:
 SHOW CREATE PROCEDURE / SHOW CREATE FUNCTION
 SHOW PROCEDURE STATUS / SHOW FUNCTION STATUS
 SELECT from mysql.proc
 SELECT from information_schema

At this point, we've made many procedures. They're stored in a MySQL database. Let's look at
the information MySQL has actually stored. There are currently four ways to do this. Two of them
involve SHOW statements. Two of them involve SELECT statements.

1. Show

mysql> show create procedure p6//
+-----------+----------+-------------------+
| Procedure | sql_mode | Create Procedure |
+-----------+----------+-------------------+
p6		CREATE PROCEDURE
		`db5`.`p6`(out p
		int) set p = -5
+-----------+----------+-------------------+
1 row in set (0.00 sec)

The first way to get the metadata information is to execute SHOW CREATE PROCEDURE. It's
like SHOW CREATE TABLE and other similar MySQL statements. It doesn't return exactly what
you typed in when you made the procedure, but it's close enough for most purposes.

 Copyright © 2005, MySQL AB Page 44

2. Show

mysql> SHOW PROCEDURE STATUS LIKE 'p6'//
+------+------+-----------+----------------+
| Db | Name | Type | Definer | ...
+------+------+-----------+----------------+
| db5 | p6 | PROCEDURE | root@localhost | ...
+------+------+-----------+----------------+
1 row in set (0.01 sec)

The second way to get metadata information is to execute SHOW PROCEDURE STATUS. This
gives you a bit more detail.

3. SELECT from mysql.proc

SELECT * FROM mysql.proc WHERE name = 'p6'//
+------+------+-----------+---------------+
| db | name | type | specific_name | ...
+------+------+-----------+---------------+
| db5 | p6 | PROCEDURE | p6 | ...
+------+------+-----------+---------------+
1 row in set (0.00 sec)

The third way to get metadata information is to execute a SELECT statement. This method
provides the most detail, and it's done with SELECT instead of with SHOW.

4. SELECT from information_schema: My Favourite

The fourth way to get metadata is with “SELECT ... FROM information_schema. ...”.
I have a strong bias towards doing things the “ANSI/ISO standard” way, so I believe that this is
the only good way – the other ways are design errors. Of course, you might have guessed that
there are other MySQL people who strongly hold other opinions. So you can take these reasons
seriously, or skeptically:

1. Other DBMS, e.g. SQL Server 2000, use information_schema. MySQL's SHOW is proprietary.

2. There is no guarantee that you have privileges to access mysql.proc, while there is a
guarantee that you can access information_schema views. Everybody always has an implicit
SELECT privilege on all tables in the information_schema database.

3. SELECT has a multitude of options like getting expressions, grouping, ordering, and of course
producing a result set that you can FETCH from. SHOW has no such things.

Well, now that you know that I like it, you are (I hope) asking: okay, so what is it?

As usual, I'll try to answer that with a few examples.

First, I'll use an information_schema SELECT to show what columns are in
information_schema.routines.

 Copyright © 2005, MySQL AB Page 45

mysql> SELECT TABLE_NAME, COLUMN_NAME, COLUMN_TYPE FROM
INFORMATION_SCHEMA.COLUMNS
 -> WHERE TABLE_NAME = 'ROUTINES';//
+------------+--------------------+---------------+
| TABLE_NAME | COLUMN_NAME | COLUMN_TYPE |
+------------+--------------------+---------------+
ROUTINES	SPECIFIC_NAME	varchar(64)
ROUTINES	ROUTINE_CATALOG	longtext
ROUTINES	ROUTINE_SCHEMA	varchar(64)
ROUTINES	ROUTINE_NAME	varchar(64)
ROUTINES	ROUTINE_TYPE	varchar(9)
ROUTINES	DTD_IDENTIFIER	varchar(64)
ROUTINES	ROUTINE_BODY	varchar(8)
ROUTINES	ROUTINE_DEFINITION	longtext
ROUTINES	EXTERNAL_NAME	varchar(64)
ROUTINES	EXTERNAL_LANGUAGE	varchar(64)
ROUTINES	PARAMETER_STYLE	varchar(8)
ROUTINES	IS_DETERMINISTIC	varchar(3)
ROUTINES	SQL_DATA_ACCESS	varchar(64)
ROUTINES	SQL_PATH	varchar(64)
ROUTINES	SECURITY_TYPE	varchar(7)
ROUTINES	CREATED	varbinary(19)
ROUTINES	LAST_ALTERED	varbinary(19)
ROUTINES	SQL_MODE	longtext
ROUTINES	ROUTINE_COMMENT	varchar(64)
ROUTINES	DEFINER	varchar(77)
+------------+--------------------+---------------+
20 rows in set (0.01 sec)

Nifty, eh? Whenever I want to know about an information_schema view, I select from another
information_schema view such as TABLES or COLUMNS. It's metadata of the metadata.

So here we'll see how many procedures I have defined in database db6:

mysql> SELECT COUNT(*) FROM INFORMATION_SCHEMA.ROUTINES
 -> WHERE ROUTINE_SCHEMA = 'db6';//
+----------+
| COUNT(*) |
+----------+
| 28 |
+----------+
1 row in set (0.02 sec)

 Copyright © 2005, MySQL AB Page 46

And now we'll have a closer look at procedure 'p1' which was the first procedure I made. I
reformatted the mysql client display, but the information is what mysql says.

| SPECIFIC_NAME | ROUTINE_CATALOG | ROUTINE_SCHEMA
+---------------+-----------------+---------------
• p19 | NULL | p19

| ROUTINE_NAME | ROUTINE_TYPE | DTD_IDENTIFIER
+---------------+-----------------+---------------
| p19 | PROCEDURE | NULL

| ROUTINE_BODY | ROUTINE_DEFINITION | EXTERNAL_NAME
+--------------+--------------------+--------------
| SQL | select * from t | NULL

| EXTERNAL_LANGUAGE | PARAMETER_STYLE | IS_DETERMINISTIC
|-------------------+-----------------+-----------------
| NULL | SQL | NO

| SQL_DATA_ACCESS | SQL_PATH | SECURITY_TYPE | CREATED
+-----------------+----------+---------------+--------
| CONTAINS SQL | NULL | DEFINER | 2004-12-19

| CREATED | LAST_ALTERED | SQL_MODE
+---------------------+---------------------+---------
| 2004-12-19 15:00:26 | 2004-12-19 15:00:26 |

| ROUTINE_COMMENT | DEFINER
+-----------------+---------------
| | root@localhost

Access control for the ROUTINE_DEFINITION column

The ROUTINE_DEFINITION column in INFORMATION_SCHEMA.ROUTINES has the body of
the procedure or function, for example “select * from t”. That might be sensitive information, so
the column value is invisible to everyone but the creator.

That is: if the person doing the SELECT isn't the same as the the person who created – if
CURRENT_USER <> INFORMATION_SCHEMA.ROUTINES.DEFINER – then MySQL returns
NULL for the ROUTINE_DEFINITION column.

This check is not working at time of writing.

Additional clause in SHOW PROCEDURE STATUS

Now that I've listed what the columns are in INFORMATION_SCHEMA.ROUTINES, I can go
back and explain a new detail about SHOW PROCEDURE STATUS. Syntax:

SHOW PROCEDURE STATUS [WHERE condition];

The condition works like a condition in a SELECT statement: if it's true, the row appears in the
output of SHOW PROCEDURE STATUS. But here's the weird part: in the WHERE clause you
must use INFORMATION_SCHEMA column names, but in the display you'll see SHOW
PROCEDURE STATUS field names. For example:

 Copyright © 2005, MySQL AB Page 47

mysql> SHOW PROCEDURE STATUS WHERE Db = 'p';
ERROR 1054 (42S22): Unknown column 'Db' in 'where clause'

mysql> SHOW PROCEDURE STATUS WHERE ROUTINE_NAME = 'p';
+------+------+-----------+----------------+
| Db | Name | Type | Definer | ...
+------+------+-----------+----------------+
| db11 | p | PROCEDURE | root@localhost | ...
+------+------+-----------+----------------+
1 row in set (0.00 sec)

Perhaps, knowing this, I can score higher on the MySQL Certification Exam. I would never
consider putting this feature to practical use, though.

Details

Summary of next pages:
 ALTER and DROP
 Oracle / SQL Server / DB2 / ANSI comparison
 Style
 Bugs
 Feature Requests
 Resources

And now I've crammed a lot of details at the end. We won't look at all of these with the degree of
attention that they deserve, but that's okay, trial and error will reveal their secrets.

ALTER and DROP

ALTER PROCEDURE p6 COMMENT 'Unfinished' //
DROP PROCEDURE p6 //

Oracle Comparison

Summary:

- Oracle allows DECLARE after OPEN
 MySQL requires DECLARE be at the start

– Oracle allows “CURSOR cursorname IS”
MySQL requires “DECLARE cursorname CURSOR”

– Oracle doesn't require '()'
MySQL requires '()'

– Oracle allows accessing tables in functions
MySQL does not allow accessing tables in functions

– Oracle supports “packages”.
MySQL does not support “packages”.

 Copyright © 2005, MySQL AB Page 48

If you have used Oracle's PL/SQL stored procedures in the past, you'll have noticed that there
are some differences between Oracle's and MySQL's stored procedures. There are, in fact, quite
a few differences. I've only noted the common ones.

See also: http://www.ispirer.com. This is a web site that belongs to a vendor who claims to
provide a product which converts Oracle stored procedures to MySQL stored procedures. I do not
say that this product is good. I have not tried it. I just thought it is interesting that somebody has
already made a package for migrating stored procedures from other DBMSs to MySQL.

Tips for migration ...

Change assignment statements like “a:=b” to SET a=b”.

Change RETURN statements inside procedures with “LEAVE label_at_start” where
label_at_start is the first token in the stored procedure. For example:
[Oracle procedure]
CREATE PROCEDURE ... RETURN; ...
[MySQL procedure]
CREATE PROCEDURE () label_at_start: BEGIN ... LEAVE label_at_start; END
 This is only necessary with procedures, since MySQL supports RETURN in a function.

Side-By-Side

Oracle MySQL

CREATE PROCEDURE CREATE PROCEDURE
sp_name sp_name
AS
variable1 INTEGER
 BEGIN
 DECLARE variable1 INTEGER;
variable1 := 55 SET variable1 = 55;
END END

SQL Server Comparison

Summary:
– SQL Server parameter names begin with '@'
MySQL parameter names are regular identifiers

– SQL Server can say "DECLARE v1 [data type], v2 [data type]"
 MySQL can only say “DECLARE v1 [data type]; DECLARE v2 [data type]”

– SQL Server doesn't have BEGIN ... END for the procedure body
MySQL requires BEGIN ... END to surround multiple statements

– SQL Server doesn't require that statements end with ';'
MySQL requires that statements end with ';', except last statement

– SQL Server has "SET NOCOUNT" and "IF @@ROWCOUNT"
 MySQL does not have those things, but FOUND_ROWS() works

– SQL Server has “WHILE ... BEGIN” statements
MySQL has “WHILE ... DO” statements

– SQL Server allows “SELECT” for assignment

 Copyright © 2005, MySQL AB Page 49

MySQL uses SET” for assignment, exclusively

– "WHILE ... BEGIN" not "WHILE ... DO"

– SELECT instead of SET (optionally)

– SQL Server allows accessing tables in functions
MySQL does not allow accessing tables in functions

With Microsoft SQL Server, the list of differences is considerably longer. Converting Microsoft or
Sybase programs to MySQL is going to be tedious. But the differences are mostly syntax, it
requires no special intelligence to make the changes.

Some migration tips ...

If SQL Server has a variable named @xxx, you have to change it because in MySQL a variable
that starts with @ is not a stored-procedure variable, it's a session variable. Don't just change it to
xxx, because then it might become ambiguous – for example, there might be a column named
xxx in one of the database tables. Use a conventional prefix of your own choice, for example
change @xxx to var_xxx.

3. Side by Side

SQL Server MySQL

CREATE PROCEDURE CREATE PROCEDURE
sp_procedure1 sp_procedure1
AS
 ()
 BEGIN
DECLARE @x VARCHAR(100) DECLARE v__x VARCHAR(100);
EXECUTE sp_procedure2 @x CALL sp_procedure2(v__x);

DECLARE c CURSOR FOR DECLARE c CURSOR FOR
SELECT * FROM t SELECT * FROM t;

END END

DB2 Comparison

– DB2 allows PATH statement
MySQL does not allow PATH statements

– DB2 allows SIGNAL statement
MySQL does not allow SIGNAL statement

– DB2 allows overloading of routine names so it has SPECIFIC NAME clause
MySQL does not allow overloading of routine names

– DB2 has “label_x: ... GOTO label_x” syntax
MySQL has “label label_x; ... GOTO label_x” syntax (unofficial)

- DB2 allows accessing tables in functions
MySQL does not allow accessing tables in functions

 Copyright © 2005, MySQL AB Page 50

DB2 stored procedures look almost exactly the same as MySQL stored procedures. The only
things that you have to watch for are a few statements that we have not implemented yet, and
also the fact that DB2 allows overloading. That is, with DB2 you can have two routines with the
same name, and DB2 distinguishes between them by looking at their parameters, or by using a
specific name clause. DB2 stored procedures are upward compatible with MySQL stored
procedures.

Migration tips: if you're going to migrate, you need hardly any tips at all. For MySQL's lack of a
SIGNAL statement, we elsewhere discuss a temporary workaround. For DB2's GOTO, we
specifically added a similar MySQL GOTO to make the migration easier. For PATH (which
determines where the DBMS looks for the routine in the database catalog), just avoid the problem
by adding a prefix to the routine name. For the difficulty with accessing tables within functions,
you can often write procedures instead and let the OUT parameter of the procedure substitute for
a function result.

Side by Side

DB2 MySQL

CREATE PROCEDURE CREATE PROCEDURE
sp_name sp_name
(parameter1 INTEGER) (parameter1 INTEGER)
LANGUAGE SQL LANGUAGE SQL
BEGIN BEGIN
 DECLARE v INTEGER; DECLARE v INTEGER;
 IF parameter1 >=5 THEN IF parameter1 >=5 THEN
 CALL p26(); CALL p26();
 SET v = 2; SET v = 2;
 END IF; END IF;
 INSERT INTO t VALUES (v); INSERT INTO t VALUES (v);
END END
@ //

Standard Comparison

Summary:

Standard SQL requires:
[same things as in DB2]

MySQL's goal is to support these two standard SQL features:
Feature P001 "Stored Modules"
Feature P002 "Computational completeness"

The reason that DB2 is so much like MySQL is that both DBMSs support stored procedures as
defined by the SQL Standard. So MySQL's differences with DB2 are pretty well the same as our
departures from ANSI/ISO standard syntax. But we are much, much closer to the standard than
Oracle or SQL Server.

MySQL's goal is to support these two features of standard SQL: Feature P001 "Stored Modules"
Feature P002 "Computational completeness".

 Copyright © 2005, MySQL AB Page 51

Style

CREATE PROCEDURE p ()
BEGIN
 /* Use comments! */
 UPDATE t SET s1 = 5;
 CREATE TRIGGER t2_ai ...
END;//

In my examples I've used a certain style to write my stored procedures.

Keywords are in upper case.

For naming conventions, I believe it's better in a manual to say that a table is “t something” and a
column is “s something”. But in real life, with my DBA hat on, I try to go with the guidelines hinted
at in the article “SQL Naming Conventions”:
http://dbazine.com/gulutzan5.shtml

Comments always look like C comments.

I indent after the word BEGIN.

I indent back before the word END. Actually I dislike this detail. I'd prefer to say:
CREATE PROCEDURE p ()
BEGIN
 /* Use comments! */
 UPDATE t SET s1 = 5;
 CREATE TRIGGER t2_ai ...
 END;// <--
That is, the indenting should end after END, not before it. But I try to curb my abnormal impulses.

I don't suggest that you follow my style, but I do suggest that you choose a style of your own, and
stick to it when writing your own stored procedures. It makes the code so much easier to follow.

 Copyright © 2005, MySQL AB Page 52

Stored Procedure Example: tables_concat()

This is a procedure that lists all the table names in a single string. Compare the MySQL built-in
function group_concat().

CREATE PROCEDURE tables_concat
(OUT parameter1 VARCHAR(1000))
BEGIN
 DECLARE variable2 CHAR(100);
 DECLARE c CURSOR FOR
 SELECT table_name FROM information_schema.tables;
 DECLARE EXIT HANDLER FOR NOT FOUND BEGIN END; /* 1 */
 SET sql_mode='ansi'; /* 2 */
 SET parameter1 = '';
 OPEN c;
 LOOP
 FETCH c INTO variable2; /* 3 */
 SET parameter1 = parameter1 || variable2 || '.';
 END LOOP;
 CLOSE c;
 END;

/* 1 */: “BEGIN END” is a statement that does nothing at all, like the NULL statement in other
DBMS languages.
/* 2 */: Changing the sql_mode setting within the procedure so that concatenation with || will
work. The setting will still be = 'ansi' after exit from the stored procedure.
/* 3 */: Another way to get out of a LOOP: by declaring an EXIT handler that will eventually catch
the failure of a FETCH when there are no more rows.

Here's what happens if we call this procedure later:

mysql> CALL tables_concat(@x);
Query OK, 0 rows affected (0.05 sec)

mysql> SELECT @x;
+--+
| SCHEMATA.TABLES.COLUMNS.CHARACTER_SETS.COLLATIONS.C
OLLATION_CHARACTER_SET_APPLICABILITY.ROUTINES.STATIST
ICS.VIEWS.USER_PRIVILEGES.SCHEMA_PRIVILEGES.TABLE_PRI
VILEGES.COLUMN_PRIVILEGES.TABLE_CONSTRAINTS.KEY_COLUM
N_USAGE.TABLE_NAMES.columns_priv.db.fn.func.help_cate
gory.help_keyword.help_relation.help_topic.host.proc.
tables_priv.time_zone.time_zone_leap_second.time_zone
1 row in set (0.00 sec)

The objective is to get a “row number within result set” integer, similar to the ROWNUM() in other
DBMSs.

 Copyright © 2005, MySQL AB Page 53

We need a user variable to store the value after each invocation of rno(). We'll call the variable
@rno.

CREATE FUNCTION rno ()
RETURNS INT
BEGIN
 SET @rno = @rno + 1;
 RETURN @rno;
 END;

We get the row number by just using rno() in a SELECT. Here's what happens if we call the
procedure later:

mysql> SET @rno = 0;//
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT rno(),s1,s2 FROM t;//
+-------+------+------+
| rno() | s1 | s2 |
+-------+------+------+
1	1	a
2	2	b
3	3	c
4	4	d
5	5	e
+-------+------+------+
5 rows in set (0.00 sec)

Here's a trick that resets @rno to zero within the SELECT. It depends on the fact that WHERE is
evaluated first. It is slow and depends on behaviour that MySQL won't guarantee will work in
future versions.

CREATE FUNCTION rno_reset ()
RETURNS INTEGER
BEGIN
 SET @rno = 0;
 RETURN 1;
 END;
SELECT rno(),s1,s2 FROM t WHERE rno_reset()=1;//

 Copyright © 2005, MySQL AB Page 54

Function Example: running_total()

This accumulator function builds on what rno() does. The only novelty is that we have to pass a
value in the parameter in order to add to the running total with each invocation.

CREATE FUNCTION running_total (IN adder INT)
RETURNS INT
 BEGIN
 SET @running_total = @running_total + adder;
 RETURN @running_total;
 END;

Here's what happens if we use the running_total() function later:

mysql> SET @running_total = 0;//
Query OK, 0 rows affected (0.01 sec)

mysql> SELECT s1,running_total(s1),s2 FROM t ORDER BY s1;//
+------+-------------------+------+
| s1 | running_total(s1) | s2 |
+------+-------------------+------+
1	1	a
2	3	b
3	6	c
4	10	d
5	15	e
+------+-------------------+------+
5 rows in set (0.01 sec)

The running_total() function works because it's called after ORDER BY is done. This is not
standard or portable.

Procedure Example: MyISAM “Foreign Key” insertion

The MyISAM storage engine doesn't support foreign keys, but you can put the logic for foreign
key checking in a stored procedure.

CREATE PROCEDURE fk_insert (p_fk INT, p_animal VARCHAR(10))
BEGIN
 DECLARE v INT;
 BEGIN
 DECLARE EXIT HANDLER FOR SQLEXCEPTION, NOT FOUND
 SET v = 0;
 IF p_fk IS NOT NULL THEN
 SELECT 1 INTO v FROM tpk WHERE cpk = p_fk LIMIT 1;
 INSERT INTO tfk VALUES (p_fk, p_animal);
 ELSE
 SET v = 1;
 END IF;
 END;
 IF v <> 1 THEN
 DROP TABLE `The insertion failed`;
 END IF;
END;

 Copyright © 2005, MySQL AB Page 55

Notes: Either an SQLEXCEPTION or a NOT FOUND condition will cause v to be zero, but
otherwise v will be one, because the SELECT will put one into it and the EXIT HANDLER won't
set it back to zero. And here's what happens when we call ...

mysql> CREATE TABLE tpk (cpk INT PRIMARY KEY);//
Query OK, 0 rows affected (0.01 sec)
mysql> CREATE TABLE tfk (cfk INT, canimal VARCHAR(10));//
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO tpk VALUES (1),(7),(10);//
Query OK, 3 rows affected (0.01 sec)
Records: 3 Duplicates: 0 Warnings: 0

mysql> CALL fk_insert(1,'wombat');//
Query OK, 1 row affected (0.02 sec)

mysql> CALL fk_insert(NULL,'wallaby');//
Query OK, 0 rows affected (0.00 sec)

mysql> CALL fk_insert(17,'wendigo');//
ERROR 1051 (42S02): Unknown table 'The insertion failed'

 Copyright © 2005, MySQL AB Page 56

Procedure Example: Error Propagation

Suppose that procedure1 calls procedure2 calls procedure3. An SQL error in procedure3
“propagates”, that is, unless some handler catches it, it keeps going up the line, causing
procedure2 to fail, which causes procedure1 to fail, and ultimately the caller (the mysql client in
this case) sees the error. Sometimes this property is desirable so standard SQL has a SIGNAL
statement to force errors to happen, and other DBMSs have something similar (RAISERROR).
MySQL doesn't support SIGNAL yet. Until it does, force errors by doing something harmless but
erroneous.

 Copyright © 2005, MySQL AB Page 57

CREATE PROCEDURE procedure1 ()
BEGIN
 CALL procedure2();
 SET @x = 1;
END;

CREATE PROCEDURE procedure2 ()
BEGIN
 CALL procedure3();
 SET @x = 2;
END;

CREATE PROCEDURE procedure3 ()
 BEGIN
 DROP TABLE error.`error #7815`;
 SET @x = 3;
END;

Here's what happens if we call procedure1 later:

mysql> CALL procedure1()//
ERROR 1051 (42S02): Unknown table 'error #7815'

And @x is unchanged, because none of the “SET @x = ...” statements got executed. Using
DROP allows us to get a bit of user-generated diagnostic information into the error message.
However, we have to depend on the assumption that there is no database named `error`.

Procedure Example: Library

These are the specifications for a library application.

We want anybody to be able to call the procedures if they have the right privileges, which we'll set
later with
GRANT ALL ON database-name.* TO user-name;
But the other users should only be able to access using the procedures. That's no problem. It
means we want SQL SECURITY DEFINER characteristic. That's the default but we'll specify it
anyway, as documentation.

We want a procedure to add books. There should be a test that the book's id isn't positive and the
book's title isn't blank. This is a substitute for a CHECK constraint, which MySQL doesn't support.

CREATE PROCEDURE add_book
(p_book_id INT, p_book_title VARCHAR(100))
SQL SECURITY DEFINER
BEGIN
 IF p_book_id < 0 OR p_book_title='' THEN
 SELECT 'Warning: Bad parameters';
 END IF;
 INSERT INTO books VALUES (p_book_id, p_book_title);
 END;

We want a procedure to add patrons. There should be a test to warn that there are already more
than 2 patrons. It's possible to test such a thing with a subquery, e.g.
IF (SELECT COUNT(*) FROM table-name) > 2) THEN ... END IF;

 Copyright © 2005, MySQL AB Page 58

But at time of writing there are bugs with subqueries, so instead we'll use "SELECT COUNT(*)
INTO variable-name".

CREATE PROCEDURE add_patron
(p_patron_id INT, p_patron_name VARCHAR(100))
SQL SECURITY DEFINER
BEGIN
 DECLARE v INT DEFAULT 0;
 SELECT COUNT(*) FROM patrons INTO v;
 IF v > 2 THEN
 SELECT 'warning: already there are ',v,'patrons!';
 END IF;
 INSERT INTO patrons VALUES (p_patron_id,p_patron_name);
END;

We want a procedure to check out books. During the transaction we'd like to display the patrons
who already have this book, and the books that this patron already has. We'll find that information
with cursor fetching, and we'll use two different ways to test whether there's no more data to
fetch: first by checking whether the variable retains its original NULL value after a fetch, second
by catching fetch failure with a NOT FOUND handler.

It's cleaner looking if the two cursors are in separate BEGIN/END blocks. But we'll declare
variables in the main BEGIN/END block, so that their scope is the whole procedure.

CREATE PROCEDURE checkout (p_patron_id INT, p_book_id INT)
SQL SECURITY DEFINER
BEGIN
 DECLARE v_patron_id, v_book_id INT;
 DECLARE no_more BOOLEAN default FALSE;
 DECLARE CONTINUE HANDLER FOR NOT FOUND SET no_more=TRUE;
 BEGIN
 DECLARE c1 CURSOR FOR SELECT patron_id
 FROM transactions WHERE book_id = p_book_id;
 OPEN c1;
 SET v_patron_id=NULL;
 FETCH c1 INTO v_patron_id;
 IF v_patron_id IS NOT NULL THEN
 SELECT 'Book is already out to this patron:',
 v_patron_id;
 END IF;
 CLOSE c1;
 END;
 BEGIN
 DECLARE c2 CURSOR FOR SELECT book_id
 FROM transactions WHERE patron_id = p_patron_id;
 OPEN c2;
 book_loop: LOOP
 FETCH c2 INTO v_book_id;
 IF no_more THEN
 LEAVE book_loop;
 END IF;
 SELECT 'Patron already has this book:', v_book_id;
 END LOOP;
 END;
 INSERT INTO transactions VALUES (p_patron_id, p_book_id);
 END;

 Copyright © 2005, MySQL AB Page 59

Procedure Example: Hierarchy (I)

The hierarchy() procedure does part of what CONNECT BY would do with another DBMS. We
have a Persons table where descendants are linked to ancestors via a column person_id. We
pass parameter start_with = person to begin the list with. We display the ancestors and
descendants in order.

The procedure (well actually two procedures) listing is on the next two pages. I expect that since
you've gotten this far, you'll be able to follow the perambulations if you read carefully. Still, I'd
better prepare you with a few explanatory notes first.

The hierarchy() procedure receives a person's name as an input parameter. It performs some
initializations – most importantly, it makes a temporary table where each result row will be stored
as it's found. Then it calls another procedure, hierarchy2(). Now, hierarchy2() is recursive, which
means that it calls itself. This wouldn't be necessary if every father had only zero or one sons, but
that's not how things are, so as we reach each branch, we have to keep going down the tree with
recursion, then return to the branching point and go down the next branch.

I decided to make the exception handler set a flag (error) which gets checked after any SQL
statement. If a statement fails, I use “SELECT 'string'” to output a diagnostic, and then “LEAVE
proc”. Since proc is a label at the start of the procedure, that effectively means “leave the
procedure”.

I made some of the compound statements nested (BEGIN END within BEGIN END) so that I'd be
able to do some DECLAREs of variables and handlers just for the specific statements that they
are relevant to. Remember that any DECLAREs in the outer compound statement are still in
effect for the inner compound statement unless they're overridden, and remember that when an
inner compound statement ends, its declarations go out of scope (cease to be noticeable).

The CREATE PROCEDURE for hierarchy() is on the next page. On the page after that is the
CREATE PROCEDURE for hierarchy2(). On the page after that is a listing that shows what
happens when I call hierarchy() ... if all goes well!

 Copyright © 2005, MySQL AB Page 60

CREATE PROCEDURE hierarchy (start_with CHAR(10))
proc:
BEGIN
 DECLARE temporary_table_exists BOOLEAN;
 BEGIN
 DECLARE CONTINUE HANDLER FOR SQLEXCEPTION BEGIN END;
 DROP TABLE IF EXISTS Temporary_Table;
 END;
 BEGIN
 DECLARE v_person_id, v_father_id INT;
 DECLARE v_person_name CHAR(20);
 DECLARE done, error BOOLEAN DEFAULT FALSE;
 DECLARE CONTINUE HANDLER FOR NOT FOUND SET done = TRUE;
 DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
 SET error = TRUE;
 CREATE TEMPORARY TABLE Temporary_Table
 (person_id INT, person_name CHAR(20), father_id INT);
 IF error THEN
 SELECT 'CREATE TEMPORARY failed'; LEAVE proc; END IF;
 SET temporary_table_exists=TRUE;
 SELECT person_id, person_name
 INTO v_person_id, v_person_name FROM Persons
 WHERE person_name = start_with limit 1;
 IF error THEN
 SELECT 'First SELECT failed'; LEAVE proc; END IF;
 IF v_person_id IS NOT NULL THEN
 INSERT INTO Temporary_Table VALUES
 (v_person_id, v_person_name, v_father_id);
 IF error THEN
 SELECT 'First INSERT failed'; LEAVE proc; END IF;
 CALL hierarchy2(v_person_id);
 IF error THEN
 SELECT 'First CALL hierarchy2() failed'; END IF;
 END IF;
 SELECT person_id, person_name, father_id
 FROM Temporary_Table;
 IF error THEN
 SELECT 'Temporary SELECT failed'; LEAVE proc; END IF;
 END;
 IF temporary_table_exists THEN
 DROP TEMPORARY TABLE Temporary_Table;
 END IF;
END;

 Copyright © 2005, MySQL AB Page 61

CREATE PROCEDURE hierarchy2 (start_with INT)
proc:
BEGIN
 DECLARE v_person_id INT, v_father_id INT;
 DECLARE v_person_name CHAR(20);
 DECLARE done, error BOOLEAN DEFAULT FALSE;
 DECLARE c CURSOR FOR
 SELECT person_id, person_name, father_id
 FROM Persons WHERE father_id = start_with;
 DECLARE CONTINUE HANDLER FOR NOT FOUND SET done = TRUE;
 DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
 SET error = TRUE;
 OPEN c;
 IF error THEN
 SELECT 'OPEN failed'; LEAVE proc; END IF;
 REPEAT
 SET v_person_id=NULL;
 FETCH c INTO v_person_id, v_person_name, v_father_id;
 IF error THEN
 SELECT 'FETCH failed'; LEAVE proc; END IF;
 IF done=FALSE THEN
 INSERT INTO Temporary_Table VALUES
 (v_person_id, v_person_name, v_father_id);
 IF error THEN
 SELECT 'INSERT in hierarchy2() failed'; END IF;
 CALL hierarchy2(v_person_id);
 IF error THEN
 SELECT 'Recursive CALL hierarchy2() failed'; END IF;
 END IF;
 UNTIL done = TRUE
 END REPEAT;
 CLOSE c;
 IF error THEN
 SELECT 'CLOSE failed'; END IF;
END;

 Copyright © 2005, MySQL AB Page 62

What happens when I make some sample data and call hierarchy() ...

mysql> CREATE TABLE Persons (person_id INT, person_name CHAR(20),
father_id INT);//
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO Persons VALUES (1,'Grandpa',NULL);//
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO Persons VALUES (2,'Pa-1',1),(3,'Pa-2',1);//
Query OK, 2 rows affected (0.00 sec)
Records: 2 Duplicates: 0 Warnings: 0

mysql> INSERT INTO Persons VALUES (4,'Grandson-1',2),(5,'Grandson-
2',2);//
Query OK, 2 rows affected (0.00 sec)
Records: 2 Duplicates: 0 Warnings: 0

mysql> call hierarchy('Grandpa')//
+-----------+-------------+-----------+
| person_id | person_name | father_id |
+-----------+-------------+-----------+
1	Grandpa	NULL
2	Pa-1	1
4	Grandson-1	2
5	Grandson-2	2
3	Pa-2	1
+-----------+-------------+-----------+
5 rows in set (0.01 sec)

Query OK, 0 rows affected (0.01 sec)

The search goes all the way down to grandsons, then starts again at sons. This is a "depth first"
display. A "width first" display would have been ordered by level, that is, first the grandpa, then
all sons, then all grandsons.

The hierarchy() procedure is pretty complex, eh? It might have bugs that I haven't thought of. It
will probably fail if recursion is too deep, e.g. if there are 100 generations. It will certainly loop if
there is a cycle, e.g. if somebody is his own grandpa. But despite all those caveats, I think I've
proven that CONNECT BY is possible in MySQL via a recursive stored procedure.

Tips when writing long routines

MySQL has no stored-procedure debugger, and MySQL error messages can be unhelpful. Here's
what I do when I'm creating a 20-line procedure and I see an error message.

Start an editor, and copy the statement to the editor. I find it's easier to change the statement with
the editor and then cut-and-paste on the mysql client.

If it's a syntax error, then remove one statement at a time until the syntax error goes away. This is
usually faster than eyeballing the whole CREATE PROCEDURE statement, which of course will
often appear to be perfectly all right.

 Copyright © 2005, MySQL AB Page 63

If it's a runtime error, then add “SELECT n;” after every executable statement inside the body,
where n is 0, 1, 2, etc. Then call the procedure again. This is a diagnostic for tracing the flow of
control.

If it's a data error, then skip over it by adding “DECLARE CONTINUE HANDLER FOR ... BEGIN
END;”. Often with a test database the data just isn't there, so while debugging I have these
statements that let me carry on.

Bugs

There are still severe bugs in our stored procedure code; MySQL 5.0 is still in alpha. I counted
the relevant bugs on October 27th 2004, and again on December 14th 2004.

Bug Count On October 27 2004:
Category Count
Causes Operating System To Reboot 1
Crashes or Hangs 14
Returns 'Packets out of order' 5
Fails 21
 --
 41

Bug Count On December 14 2004:
Category Count
Causes Operating System To Reboot 1
Crashes or Hangs 23
Returns 'Packets out of order' 6
Fails 31
 --
 61

You can measure our progress by looking at the MySQL bugs web page and
searching for stored procedure or trigger. Here are the steps to take:
1. go to http://bugs.mysql.com
2. click “Advanced Search”
3. In “Find bugs with any of the words” box, enter “procedure*
trigger*”.
4. In the dropdown box that by default says “10 bugs”, select “All”.
5. Click “Boolean mode”.
6. Click “Search”.

 Copyright © 2005, MySQL AB Page 64

Feature Requests

Summary:
 SIGNAL
 PATH
 Accessing Tables in Functions or Triggers
 BEGIN ATOMIC ... END
 Encrypted storage
 Timeout
 Debugger
 External Languages
 DROP ... CASCADE|RESTRICT

Here's a quick look at some additions we're looking to add.

The most important feature requests are for functions that help us to catch up with the power of
the ANSI/ISO standard and of DB2. We've also talked about the need for a way to time out if a
function goes into a loop and runs too long.

Resources

(I) Web Pages Of MySQL
(II) Downloads From MySQL
(III) Books

For my last act I'll show you where you can go for further information.

Web Pages Of MySQL

MySQL reference manual chapter "Stored Procedures":
http://www.mysql.com/doc/en/Stored_Procedures.html

Newsletter article "Stored Procedures in MySQL":
http://www.mysql.com/newsletter/2004-01/a0000000297.html

Old MySQL User Conference slides:
mysql.mirror.anlx.net/Downloads/Presentations/MySQL-User-Conference-2003/MySQL
-Stored-Procedures.pdf

Here are some resources you'll be able to access from the Web.

 Copyright © 2005, MySQL AB Page 65

MySQL Downloads

> cd ~/mysql-5.0/mysql-test/t
> dir sp*
 10025 2004-10-23 05:19 sp-error.test
 3974 2004-10-23 05:19 sp-security.test
 754 2004-08-07 08:51 sp-threads.test
 45344 2004-10-24 06:09 sp.test
> cd ~/mysql-5.0/Docs
> dir sp*
 41909 2004-08-05 09:19 sp-imp-spec.txt
 4948 2004-08-05 09:19 sp-implemented.txt

For more details, download the MySQL 5.0 source code. I don't just mean the code itself. There
are test scripts in the mysql-test directory, and documentation or news files in the Docs directory.

Books

Understanding SQL's Stored Procedures: A Complete Guide to SQL/PSM
Author: Jim Melton
Publisher: Morgan Kaufmann
Only available second-hand.

One excellent reference is a book that was written about standard SQL stored procedures -- Jim
Melton's "Understanding SQL's stored procedures, a complete guide to SQL/PSM". This is a
book about the SQL standard, and MySQL tries to follow the standard, so it's useful in places.

That's a nice thing, to have a book available before the product is ready.

Conclusion

This is the end of the book. I don't bother with a review or an index, since I'm sure you've had no
trouble memorizing it all.

If you enjoyed this book, you should look for more in the “MySQL 5.0 New Features” series. The
next books will be “Triggers” and “Views”.

Thank you very much for your attention. If you have any comments about this book, please send
them to one of the MySQL forums:
http://forums.mysql.com/

About MySQL

MySQL AB develops and supports a family of high performance, affordable database
servers and tools. The company's flagship product is MySQL, the world's most popular
open source database, with more than six million active installations. Many of the world's
largest organizations, including Yahoo!, Sabre Holdings, The Associated Press, Suzuki
and NASA are realizing significant cost savings by using MySQL to power high-volume
Web sites, business-critical enterprise applications and packaged software.

 Copyright © 2005, MySQL AB Page 66

http://forums.mysql.com/

With headquarters in Sweden and the United States – and operations around the world –
MySQL AB supports both open source values and corporate customers' needs in a
profitable, sustainable business. For more information about MySQL, please visit
www.mysql.com.

 Copyright © 2005, MySQL AB Page 67

http://www.mysql.com/

	MySQL 5.0 New Features Series – Part 1
	A MySQL® Technical White Paper

	Introduction
	This book is for long-time MySQL users who want to know "wha
	What I'm hoping to do is make this look like a hands-on sess
	To do this, I'll go through each little item, building up sl
	Conventions and Styles

	A Definition and an Example
	Why Stored Procedures
	Starting the MySQL Client
	Check for the Correct Version
	The Sample “Database”
	Pick a Delimiter
	CREATE PROCEDURE Example
	Digression: Legal Identifiers
	Procedure Names are not case sensitive, so 'p1' and 'P1' are
	You cannot use two procedures with the same name in the same
	Procedure names can be delimited. If the name is delimited,
	mysql> CALL pi();
	Error 1064 (42000): You have a syntax error.
	mysql> CALL pi ();
	Error 1305 (42000): PROCEDURE does not exist.
	In the first example, I used a function named pi. It's legal
	CREATE PROCEDURE p1 () SELECT * FROM t; // <--
	“() “is the 'parameter list'.
	The third part of the CREATE PROCEDURE statement is the para
	necessary to have a parameter list inside parentheses here.
	CREATE PROCEDURE p1 () SELECT * FROM t; // <--
	“SELECT * FROM t;” is the body.
	And finally, the last part of the statement is the procedure
	It's probably good if you remember that I'm calling this par
	Ordinarily, it's not normal to put SELECT statements in stor
	illustration. I decided that some procedure should simply se

	Why MySQL Statements are Legal in a Procedure Body
	Call the Procedure

	Characteristics Clauses
	2.
	3.
	4.
	5.
	6.
	Digressions
	Digression: The effect of CALL p2() //
	Digression: sql_mode unchanging

	Exercise
	Question
	Answer

	Parameters
	IN example
	OUT example
	Compound Statements

	The New SQL Statements
	Variables
	Example with two DECLARE statements
	Example with no DEFAULT clause and SET statement
	There are several ways to initialize a variable. When declar
	Example with DEFAULT clause
	Example of CALL

	Scope
	Conditions and IF-THEN-ELSE
	1.
	2.
	3.
	4.
	5.
	6.
	7.

	CASE
	1.

	2.
	Question
	Answer

	Loops
	WHILE ... END WHILE
	WHILE ... END WHILE example
	WHILE ... END WHILE example: CALL

	REPEAT ... END REPEAT
	REPEAT ... END REPEAT: look at the UNTIL
	REPEAT ... END REPEAT: calling
	LOOP ... END LOOP
	LOOP ... END LOOP: with IF and LEAVE
	LOOP ... END LOOP: calling
	Labels
	End Labels
	LEAVE and Labels
	ITERATE
	ITERATE: Walking through the loop
	ITERATE: Walking through the loop
	ITERATE: walking through the loop
	ITERATE: walking through the loop
	ITERATE: walking through the loop

	GOTO
	Grand combination

	Error Handling
	1. Sample Problem: Log Of Failures
	2. Sample Problem: Log Of Failures (2)
	3. Sample Problem: Log Of Failures
	4. Sample Problem: Log Of Errors
	5. Sample Problem: Log Of Errors

	DECLARE HANDLER syntax
	DECLARE CONTINUE HANDLER example
	DECLARE CONTINUE HANDLER
	DECLARE CONTINUE HANDLER
	DECLARE CONTINUE HANDLER example
	5. DECLARE CONTINUE HANDLER
	DECLARE CONTINUE HANDLER example
	DECLARE CONTINUE HANDLER example
	DECLARE CONTINUE HANDLER example
	DECLARE CONTINUE HANDLER example
	DECLARE CONDITION
	2. DECLARE CONDITION
	DECLARE CONDITION
	DECLARE CONDITION

	Cursors
	Cursor Example
	Cursor Example
	Cursor Example
	Cursor Example
	Cursor Example
	Cursor Example
	Cursor Example
	8. Cursor Example
	9. Cursor Example
	Cursor Example

	Cursor Characteristics
	Security
	2. Privileges CREATE ROUTINE
	Privileges EXECUTE
	Privileges SHOW ROUTINE?
	Privileges Invokers and Definers
	Privileges Invokers and Definers

	Functions
	CREATE FUNCTION
	2. Examples
	3. Limitations
	4. Limitations

	Metadata
	Show
	Show
	SELECT from mysql.proc
	SELECT from information_schema: My Favourite
	Access control for the ROUTINE_DEFINITION column
	Additional clause in SHOW PROCEDURE STATUS

	Details
	ALTER and DROP
	Oracle Comparison
	Side-By-Side
	Oracle MySQL
	CREATE PROCEDURE CREATE PROCEDURE
	sp_name sp_name
	AS
	variable1 INTEGER
	BEGIN
	DECLARE variable1 INTEGER;
	variable1 := 55 SET variable1 = 55;
	END END

	SQL Server Comparison
	Side by Side
	SQL Server MySQL
	CREATE PROCEDURE CREATE PROCEDURE
	sp_procedure1 sp_procedure1
	AS
	()
	BEGIN
	DECLARE @x VARCHAR(100) DECLARE v__x VARCHAR(100);
	EXECUTE sp_procedure2 @x CALL sp_procedure2(v__x);
	DECLARE c CURSOR FOR DECLARE c CURSOR FOR
	SELECT * FROM t SELECT * FROM t;
	END END

	DB2 Comparison
	Side by Side
	DB2 MySQL
	CREATE PROCEDURE CREATE PROCEDURE
	sp_name sp_name
	(parameter1 INTEGER) (parameter1 INTEGER)
	LANGUAGE SQL LANGUAGE SQL
	BEGIN BEGIN
	DECLARE v INTEGER; DECLARE v INTEGER;
	IF parameter1 >=5 THEN IF parameter1 >=5 THEN
	CALL p26(); CALL p26();
	SET v = 2; SET v = 2;
	END IF; END IF;
	INSERT INTO t VALUES (v); INSERT INTO t VALUES (v);
	END END
	@ //

	Standard Comparison

	Style
	Stored Procedure Example: tables_concat()
	Function Example: running_total()
	Procedure Example: MyISAM “Foreign Key” insertion
	Procedure Example: Error Propagation
	Procedure Example: Library
	Procedure Example: Hierarchy (I)

	Tips when writing long routines
	Bugs
	Feature Requests
	Resources
	Web Pages Of MySQL
	MySQL Downloads
	Books

	Conclusion
	About MySQL

